北京大学学报(医学版) ›› 2023, Vol. 55 ›› Issue (3): 471-479. doi: 10.19723/j.issn.1671-167X.2023.03.013

• 论著 • 上一篇    下一篇

乳腺癌患者新发心血管疾病预测模型的建立与验证:基于内蒙古区域医疗数据

张云静1,2,乔丽颖3,祁萌4,严颖5,亢伟伟3,刘国臻6,王明远6,席云峰3,*(),王胜锋1,2,*()   

  1. 1. 北京大学公共卫生学院流行病与卫生统计学系,北京 100191
    2. 重大疾病流行病学教育部重点实验室(北京大学),北京 100191
    3. 内蒙古自治区疾病预防控制中心,呼和浩特 010031
    4. 北京大学肿瘤医院暨北京市肿瘤防治研究所乳腺癌预防治疗中心,恶性肿瘤发病机制及转化研究教育部重点实验室,北京 100142
    5. 北京大学肿瘤医院暨北京市肿瘤防治研究所乳腺肿瘤内科,恶性肿瘤发病机制及转化研究教育部重点实验室,北京 100142
    6. 北京帕云医疗科技有限公司,北京 100080
  • 收稿日期:2023-02-28 出版日期:2023-06-18 发布日期:2023-06-12
  • 通讯作者: 席云峰,王胜锋 E-mail:xiyunfeng210@163.com;shengfeng1984@126.com
  • 基金资助:
    国家自然科学基金(82173616)

Development and validation of risk prediction model for new-onset cardiovascular diseases among breast cancer patients: Based on regional medical data of Inner Mongolia

Yun-jing ZHANG1,2,Li-ying QIAO3,Meng QI4,Ying YAN5,Wei-wei KANG3,Guo-zhen LIU6,Ming-yuan WANG6,Yun-feng XI3,*(),Sheng-feng WANG1,2,*()   

  1. 1. Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
    2. Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
    3. Inner Mongolia Integrative Center for Disease Control and Prevention, Hohhot 010031, China
    4. Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education; Breast Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
    5. Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education; Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
    6. Beijing PD Cloud Medical Technology Co., LTD, Beijing 100080, China
  • Received:2023-02-28 Online:2023-06-18 Published:2023-06-12
  • Contact: Yun-feng XI,Sheng-feng WANG E-mail:xiyunfeng210@163.com;shengfeng1984@126.com
  • Supported by:
    the National Natural Science Foundation of China(82173616)

RICH HTML

  

摘要:

目的: 开发和验证乳腺癌患者新发心血管疾病(cardiovascular disease, CVD)的3年预测模型。方法: 基于内蒙古区域医疗数据,纳入接受抗肿瘤治疗的18岁以上乳腺癌女性患者。多因素Fine & Gray模型纳入预测因子后,使用Lasso回归筛选变量,在训练集上拟合Cox比例风险、Logistic回归、Fine & Gray、随机森林和XGBoost模型,在测试集上分别用受试者工作特征(receiver operating characteristics, ROC)曲线下面积(area under the curve, AUC)和校准曲线评价模型区分度和校准度。结果: 共纳入19 325例接受抗肿瘤治疗的乳腺癌患者,平均年龄(52.76±10.44)岁,中位随访时间1.18年[四分位距(interquartile range, IQR):2.71]。7 856例患者(40.65%)在乳腺癌诊断3年内发生CVD。Lasso回归筛选的预测因子为乳腺癌诊断年龄、居住地国内生产总值(gross domestic product,GDP)、肿瘤分期、高血压、缺血性心脏病及脑血管疾病既往史、手术类型、化疗类型、放疗类型。不考虑生存时间时,XGBoost模型的AUC显著高于随机森林模型[0.660 (95%CI:0.644~0.675) vs. 0.608 (95%CI:0.591~0.624), P < 0.001]和Logistic回归[0.609 (95%CI:0.593~0.625), P < 0.001],Logistic回归和XGBoost模型的校准度更好。考虑生存时间时,Cox比例风险模型和Fine & Gray模型的AUC差异无统计学意义[0.600 (95%CI:0.584~0.616) vs. 0.615 (95%CI:0.599~0.631), P=0.188],但Fine & Gray模型的校准度更好。结论: 基于区域医疗数据建立乳腺癌新发CVD的预测模型具有可行性。不考虑生存时间时,Logistic回归和XGBoost模型的预测性能更好;考虑生存时间时,Fine & Gray模型的预测性能更好。

关键词: 乳腺肿瘤, 心血管疾病, 风险预测模型, 危险性评估, 计算机化病案系统

Abstract:

Objective: To develop and validate a three-year risk prediction model for new-onset cardiovascular diseases (CVD) among female patients with breast cancer. Methods: Based on the data from Inner Mongolia Regional Healthcare Information Platform, female breast cancer patients over 18 years old who had received anti-tumor treatments were included. The candidate predictors were selected by Lasso regression after being included according to the results of the multivariate Fine & Gray model. Cox proportional hazard model, Logistic regression model, Fine & Gray model, random forest model, and XGBoost model were trained on the training set, and the model performance was evaluated on the testing set. The discrimination was evaluated by the area under the curve (AUC) of the receiver operator characteristic curve (ROC), and the calibration was evaluated by the calibration curve. Results: A total of 19 325 breast cancer patients were identified, with an average age of (52.76±10.44) years. The median follow-up was 1.18 [interquartile range (IQR): 2.71] years. In the study, 7 856 patients (40.65%) developed CVD within 3 years after the diagnosis of breast cancer. The final selected variables included age at diagnosis of breast cancer, gross domestic product (GDP) of residence, tumor stage, history of hypertension, ischemic heart disease, and cerebrovascular disease, type of surgery, type of chemotherapy and radiotherapy. In terms of model discrimination, when not considering survival time, the AUC of the XGBoost model was significantly higher than that of the random forest model [0.660 (95%CI: 0.644-0.675) vs. 0.608 (95%CI: 0.591-0.624), P < 0.001] and Logistic regression model [0.609 (95%CI: 0.593-0.625), P < 0.001]. The Logistic regression model and the XGBoost model showed better calibration. When considering survival time, Cox proportional hazard model and Fine & Gray model showed no significant difference for AUC [0.600 (95%CI: 0.584-0.616) vs. 0.615 (95%CI: 0.599-0.631), P=0.188], but Fine & Gray model showed better calibration. Conclusion: It is feasible to develop a risk prediction model for new-onset CVD of breast cancer based on regional medical data in China. When not considering survival time, the XGBoost model and the Logistic regression model both showed better performance; Fine & Gray model showed better performance in consideration of survival time.

Key words: Breast neoplasms, Cardiovascular disease, Risk prediction model, Risk assessment, Computerized medical records systems

中图分类号: 

  • R737.9

表1

2012—2021年内蒙古自治区乳腺癌新发CVD预测模型拟纳入的变量信息"

Variables Measurement Variable assignments
Age on set Age at diagnosis of breast cancer according to birthday and date of diagnosis Years
Type of medical insurance Type of medical insurance 0=employee, 1=residence
Ethnicity Ethnicity according to medical insurance data 0=Han, 1=Mongolian, 2=others
GDP of residence GDP of district where patients lived according to Inner Mongolia Bureau of Statistics 100 million yuan
Tumor stage According to clinical TNM stage and treatment patterns. Stage=0, 1, 2, 3 was defined as “early” while stage=4 was defined as “advanced” 0=early, 1=unknown, 2=advanced
Type of surgery According to records of treatments from medical insurance data 0=none, 1=breast-conserving surgery, 2=mastectomy
Type of chemotherapy According to records of treatments from medical insurance data 0=none, 1=anthracyclines, 2=non-anthracyclines
Endocrine therapy According to records of treatments from medical insurance data 0=no, 1=yes
Type of targeted therapy According to records of treatments from medical insurance data 0=none, 1=trastuzumab, 2=non-trastuzumab
Radiotherapy According to records of treatments from medical insurance data 0=no, 1=yes
History of diabetes According to records of medical insurance before breast cancer diagnosis 0=no, 1=yes
History of renal diseases According to records of medical insurance before breast cancer diagnosis 0=no, 1=yes
History of hypertension According to records of medical insurance before breast cancer diagnosis 0=no, 1=yes
History of ischemic heart diseases According to records of medical insurance before breast cancer diagnosis 0=no, 1=yes
History of cerebrovascular diseases According to records of medical insurance before breast cancer diagnosis 0=no, 1=yes
History of dyslipidemia According to records of medical insurance before breast cancer diagnosis 0=no, 1=yes
History of hypothyroidism According to records of medical insurance before breast cancer diagnosis 0=no, 1=yes
History of hyperthyroidism According to records of medical insurance before breast cancer diagnosis 0=no, 1=yes
Charlson comorbidity index According to records of medical insurance Points
Hospitalization before diagnosis within 1 year According to records of medical insurance before breast cancer diagnosis within 1 year 0=no, 1=yes
Length of stay before diagnosis within 1 year According to the duration of hospitalization records from medical insurance before breast cancer diagnosis within 1 year Days

表2

2012—2021年内蒙古自治区接受抗肿瘤治疗的乳腺癌患者的人口学特征"

Items CVD (n=7 856) No CVD (n=11 469) P value
Age onset/years, ${\bar x}$±s 53.48±10.38 52.28±10.45 < 0.001
Type of medical insurance, n (%) < 0.001
   Employee 4 291 (54.62) 6 829 (59.54)
   Resident 3 565 (45.38) 4 640 (40.46)
Ethnicity, n (%) 0.002
   Han 6 727 (85.63) 9 620 (83.88)
   Mongolian 865 (11.01) 1 372 (11.96)
   Others 263 (3.35) 473 (4.12)
GDP of residence, median (IQR) 156.21 (180.36) 174.46 (312.93) < 0.001
Charlson comorbidity index, ${\bar x}$±s 1.89±3.32 1.84±3.24 0.254
Tumor stage, n (%) < 0.001
   Early 3 619 (46.07) 4 807 (41.91)
   Advanced 3 114 (39.64) 4 680 (40.81)
   Unknown 1 123 (14.29) 1 982 (17.28)
Previous disease history, n (%)
   Dyslipidemia 943 (12.00) 2 202 (19.20) < 0.001
   Diabetes 943 (12.00) 2 202 (19.20) < 0.001
   Renal diseases 81 (1.03) 181 (1.58) 0.002
   Hypertension 1 325 (16.87) 3 535 (30.82) < 0.001
   Ischemic heart diseases 435 (5.54) 1 313 (11.45) < 0.001
   Cerebrovascular diseases 547 (6.96) 1 372 (11.96) < 0.001
   Hyperthyroidism 10 (0.13) 26 (0.23) 0.160
   Hypothyroidism 9 (0.11) 24 (0.21) 0.165
Hospitalization before diagnosis within 1 year, n (%) 1 743 (22.19) 3 309 (28.85) < 0.001
Length of stay before diagnosis within 1 year, ${\bar x}$±s 2.88±9.15 3.67±8.99 < 0.001
Type of surgery, n (%) < 0.001
   Mastectomy 3 262 (41.52) 3 910 (34.09)
   Breast-conserving 247 (3.14) 495 (4.32)
   None 4 347 (55.33) 7 064 (61.59)
Type of chemotherapy, n (%) < 0.001
   Anthracyclines 3 399 (43.27) 4 299 (37.48)
   Non-anthracyclines 2 394 (30.47) 3 593 (31.33)
   None 2 063 (26.26) 3 577 (31.19)
Endocrine therapy, n (%) 4 669 (59.43) 7 114 (62.03) < 0.001
Type of targeted therapy, n (%) 0.018
   Trastuzumab 1 023 (13.02) 1 649 (14.38)
   Non-trastuzumab 67 (0.85) 111 (0.97)
   None 6 766 (86.13) 9 709 (84.65)
Radiotherapy, n (%) 587 (7.47) 533 (4.65) < 0.001

表3

2012—2021年内蒙古自治区接受抗肿瘤治疗的乳腺癌患者的多因素竞争风险模型结果"

Factor β SE Wald χ2 HR (95%CI) P value
Age onset/years 0.02 0.00 14.17 1.02 (1.01-1.02) < 0.001
Type of medical insurance
   Employee 1.00
   Resident -0.03 0.03 -1.05 0.97 (0.92-1.03) 0.290
Ethnicity
   Han 1.00
   Mongolian 0.00 0.04 0.12 1.00 (0.94-1.08) 0.910
   Others -0.13 0.06 -2.02 0.88 (0.78-1.00) 0.043
GDP of residence 0.00 0.00 -8.36 1.00 (1.00-1.00) < 0.001
Charlson comorbidity index 0.00 0.00 -0.40 1.00 (0.99-1.01) 0.690
Tumor stage
   Early 1.00
   Advanced -0.14 0.04 -3.44 0.87 (0.80-0.94) 0.001
   Unknown -0.06 0.03 -2.15 0.94 (0.88-0.99) 0.031
Type of surgery
   None 1.00
   Breast-conserving 0.06 0.07 0.83 1.06 (0.92-1.22) 0.410
   Mastectomy 0.27 0.03 8.75 1.31 (1.23-1.39) < 0.001
Type of chemotherapy
   None 1.00
   Anthracyclines 0.19 0.03 6.22 1.21 (1.14-1.29) < 0.001
   Non-anthracyclines 0.11 0.03 3.48 1.11 (1.05-1.18) < 0.001
Endocrine therapy
   No 1.00
   Yes -0.10 0.02 -4.07 0.90 (0.86-0.95) < 0.001
Type of targeted therapy
   None 1.00
   Trastuzumab -0.01 0.03 -0.26 0.99 (0.93-1.06) 0.790
   Non-trastuzumab -0.04 0.12 -0.33 0.96 (0.76-1.21) 0.740
Radiotherapy
   No 1.00
   Yes 0.26 0.05 5.35 1.30 (1.18-1.42) < 0.001
History of hypertension
   No 1.00
   Yes -0.44 0.04 -11.52 0.64 (0.60-0.69) < 0.001
History of dyslipidemia
   No 1.00
   Yes -0.02 0.04 -0.53 0.98 (0.90-1.06) 0.590
History of diabetes
   No 1.00
   Yes 0.03 0.04 0.83 1.03 (0.96-1.12) 0.410
History of ischemic heart diseases
   No 1.00
   Yes -0.35 0.06 -6.31 0.71 (0.63-0.79) < 0.001
History of cerebrovascular diseases
   No 1.00
   Yes -0.05 0.05 -1.07 0.95 (0.86-1.05) 0.280
History of renal diseases
   No 1.00
   Yes 0.08 0.12 0.72 1.09 (0.87-1.36) 0.470
History of hyperthyroidism
   No 1.00
   Yes -0.07 0.32 -0.22 0.93 (0.50-1.75) 0.830
History of hypothyroidism
   No 1.00
   Yes 0.01 0.32 0.02 1.01 (0.53-1.90) 0.980
Hospitalization before diagnosis within 1 year
   No 1.00
   Yes -0.07 0.04 -1.75 0.93 (0.86-1.01) 0.081
Length of stay before diagnosis within 1 year 0.00 0.00 -1.20 1.00 (0.99-1.00) 0.230

图1

2012—2021年内蒙古自治区接受抗肿瘤治疗的乳腺癌患者的测试集ROC曲线"

图2

2012—2021年内蒙古自治区接受抗肿瘤治疗的乳腺癌患者的测试集校准曲线"

图3

2012—2021年内蒙古自治区接受抗肿瘤治疗的乳腺癌患者的主分析和敏感性分析生存曲线"

1 International Agency for Research on Cancer. World cancer day: Breast cancer overtakes lung cancer as leading cause of cancer worldwide. IARC showcases key research projects to address breast cancer [EB/OL]. (2021-02-04) [2023-02-20]. https://www.iarc.who.int/news-events/world-cancer-day-2021/.
2 Connor AE , Schmaltz CL , Jackson-Thompson J , et al. Comorbidities and the risk of cardiovascular disease mortality among racially diverse patients with breast cancer[J]. Cancer, 2021, 127 (15): 2614- 2622.
doi: 10.1002/cncr.33530
3 Abdel-Qadir H , Austin PC , Lee DS , et al. A population-based study of cardiovascular mortality following early-stage breast cancer[J]. JAMA Cardiol, 2017, 2 (1): 88- 93.
doi: 10.1001/jamacardio.2016.3841
4 Sturgeon KM , Deng L , Bluethmann SM , et al. A population-based study of cardiovascular disease mortality risk in US cancer patients[J]. Eur Heart J, 2019, 40 (48): 3889- 3897.
doi: 10.1093/eurheartj/ehz766
5 Padegimas A , Clasen S , Ky B . Cardioprotective strategies to prevent breast cancer therapy-induced cardiotoxicity[J]. Trends Cardiovasc Med, 2020, 30 (1): 22- 28.
doi: 10.1016/j.tcm.2019.01.006
6 Mehta LS , Watson KE , Barac A , et al. Cardiovascular disease and breast cancer: Where these entities intersect: A scientific statement from the American Heart Association[J]. Circulation, 2018, 137 (8): e30- e66.
7 中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2021版)[J]. 中国癌症杂志, 2021, 31 (10): 954- 1040.
8 Li J , Qiang WM , Wang Y , et al. Development and validation of a risk assessment nomogram for venous thromboembolism associated with hospitalized postoperative Chinese breast cancer patients[J]. J Adv Nurs, 2021, 77 (1): 473- 483.
doi: 10.1111/jan.14571
9 Ezaz G , Long JB , Gross CP , et al. Risk prediction model for heart failure and cardiomyopathy after adjuvant trastuzumab therapy for breast cancer[J]. J Am Heart Assoc, 2014, 3 (1): e000472.
doi: 10.1161/JAHA.113.000472
10 Fogarassy G , Vathy-Fogarassy Á , Kenessey I , et al. Risk prediction model for long-term heart failure incidence after epirubicin chemotherapy for breast cancer: A real-world data-based, nationwide classification analysis[J]. Int J Cardiol, 2019, 285, 47- 52.
doi: 10.1016/j.ijcard.2019.03.013
11 Romond EH , Jeong JH , Rastogi P , et al. Seven-year follow-up assessment of cardiac function in NSABP B-31, a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel (ACP) with ACP plus trastuzumab as adjuvant therapy for patients with node-positive, human epidermal growth factor receptor 2-positive breast cancer[J]. J Clin Oncol, 2012, 30 (31): 3792- 3799.
doi: 10.1200/JCO.2011.40.0010
12 Abdel-Qadir H , Thavendiranathan P , Austin PC , et al. Development and validation of a multivariable prediction model for major adverse cardiovascular events after early stage breast cancer: A population-based cohort study[J]. Eur Heart J, 2019, 40 (48): 3913- 3920.
doi: 10.1093/eurheartj/ehz460
13 Dranitsaris G , Rayson D , Vincent M , et al. The development of a predictive model to estimate cardiotoxic risk for patients with metastatic breast cancer receiving anthracyclines[J]. Breast Cancer Res Treat, 2008, 107 (3): 443- 450.
doi: 10.1007/s10549-007-9803-5
14 Kim DY , Park MS , Youn JC , et al. Development and validation of a risk score model for predicting the cardiovascular outcomes after breast cancer therapy: The CHEMO-RADIAT score[J]. J Am Heart Assoc, 2021, 10 (16): e021931.
doi: 10.1161/JAHA.121.021931
15 Rushton M , Johnson C , Dent S . Trastuzumab-induced cardiotoxi-city: Testing a clinical risk score in a real-world cardio-oncology population[J]. Curr Oncol, 2017, 24 (3): 176- 180.
16 Chang WT , Liu CF , Feng YH , et al. An artificial intelligence approach for predicting cardiotoxicity in breast cancer patients receiving anthracycline[J]. Arch Toxicol, 2022, 96 (10): 2731- 2737.
doi: 10.1007/s00204-022-03341-y
17 Zamorano JL , Lancellotti P , Rodriguez Munoz D , et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC)[J]. Eur J Heart Fail, 2017, 19 (1): 9- 42.
doi: 10.1002/ejhf.654
18 World Health Organization. Cardiovascular diseases (CVDs) [EB/OL]. (2021-6-11) [2023-12-14]. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
19 胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34 (3): 209- 220.
doi: 10.3969/j.issn.1000-3614.2019.03.001
20 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2019概要[J]. 中国循环杂志, 2020, 35 (9): 833- 854.
21 Grundy SM , Stone NJ , Bailey AL , et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: A report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines[J]. Circulation, 2019, 139 (25): e1082- e1143.
22 Chien HC , Kao Yang YH , Bai JP . Trastuzumab-related cardio-toxic effects in Taiwanese women: A nationwide cohort study[J]. JAMA Oncol, 2016, 2 (10): 1317- 1325.
doi: 10.1001/jamaoncol.2016.1269
23 内蒙古自治区统计局. 国民经济核算-地区生产总值-各盟市年度数据[EB/OL]. (2021-03-01) [2023-02-20]. http://tj.nmg.gov.cn/datashow/easyquery/easyquery.htm?cn=B0103.
24 Charlson ME , Pompei P , Ales KL , et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation[J]. J Chronic Dis, 1987, 40 (5): 373- 383.
doi: 10.1016/0021-9681(87)90171-8
25 王俊峰, 章仲恒, 周支瑞, 等. 临床预测模型: 模型的验证[J]. 中国循证心血管医学杂志, 2019, 11 (2): 141- 144.
doi: 10.3969/j.issn.1674-4055.2019.02.04
26 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志, 2022, 37 (6): 553- 578.
doi: 10.3969/j.issn.1000-3614.2022.06.001
27 Sutton AL, Felix AS, Wahl S, et al. Racial disparities in treatment-related cardiovascular toxicities amongst women with breast cancer: A scoping review [J/OL]. J Cancer Surviv, 2022, [2022-04-14]. https://doi.org/10.1007/s11764-022-01210-2.
28 戴芮. 心脑血管疾病"协防共管"健康管理模式评价指标体系研究[D]. 江苏: 南京医科大学, 2021.
29 林晓斐. 国务院办公厅印发《中国防治慢性病中长期规划(2017—2025年)》[J]. 中医药管理杂志, 2017, 25 (4): 14.
30 Battisti NML , Andres MS , Lee KA , et al. Incidence of cardio-toxicity and validation of the Heart Failure Association-International Cardio-Oncology Society risk stratification tool in patients treated with trastuzumab for HER2-positive early breast cancer[J]. Breast Cancer Res Treat, 2021, 188 (1): 149- 163.
doi: 10.1007/s10549-021-06192-w
31 D'Agostino RB Sr , Vasan RS , Pencina MJ , et al. General car-diovascular risk profile for use in primary care: the Framingham Heart Study[J]. Circulation, 2008, 117 (6): 743- 753.
doi: 10.1161/CIRCULATIONAHA.107.699579
32 Guha A , Fradley MG , Dent SF , et al. Incidence, risk factors, and mortality of atrial fibrillation in breast cancer: A SEER-Medicare analysis[J]. Eur Heart J, 2022, 43 (4): 300- 312.
doi: 10.1093/eurheartj/ehab745
33 Henry ML , Niu J , Zhang N , et al. Cardiotoxicity and cardiac monitoring among chemotherapy-treated breast cancer patients[J]. JACC Cardiovasc Imaging, 2018, 11 (8): 1084- 1093.
doi: 10.1016/j.jcmg.2018.06.005
34 Boekel NB , Jacobse JN , Schaapveld M , et al. Cardiovascular disease incidence after internal mammary chain irradiation and anthracycline-based chemotherapy for breast cancer[J]. Br J Cancer, 2018, 119 (4): 408- 418.
doi: 10.1038/s41416-018-0159-x
35 Giordano G , Spagnuolo A , Olivieri N , et al. Cancer drug related cardiotoxicity during breast cancer treatment[J]. Expert Opin Drug Saf, 2016, 15 (8): 1063- 1074.
doi: 10.1080/14740338.2016.1182493
36 Zhang S , Liu XB , Bawa-Khalfe T , et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity[J]. Nat Med, 2012, 18 (11): 1639- 1642.
doi: 10.1038/nm.2919
37 Higuchi S , Kabeya Y , Matsushita K , et al. Incidence and complications of perioperative atrial fibrillation after non-cardiac surgery for malignancy[J]. PLoS One, 2019, 14 (5): e0216239.
doi: 10.1371/journal.pone.0216239
38 内蒙古自治区医疗保障局. 关于执行国家基本医疗保险、工伤保险和生育保险药品目录(2019年版)的通知[EB/OL]. (2019-12-06) [2023-02-25]. https://ylbzj.nmg.gov.cn/zwgk/zfxxgk/fdzdgknr/bmwj/202103/t20210326_1313389.html.
39 Nusinovici S , Tham YC , Chak Yan MY , et al. Logistic regression was as good as machine learning for predicting major chronic diseases[J]. J Clin Epidemiol, 2020, 122, 56- 69.
doi: 10.1016/j.jclinepi.2020.03.002
40 James G , Witten D , Hastie T , et al. An introduction to statistical learning with application in R[M]. New York: Springer, 2013.
41 Hastie T , Tibshirani R , Friedman JH , et al. The elements of statistical learning: Data mining, inference and prediction[M]. New York: Springer, 2009.
42 International Agency for Research on Cancer. SURVCAN [EB/OL]. (2019-01-01) [2023-02-20]. https://gco.iarc.fr/survi-val/survcan/dataviz/table?mode=population&population_group=Asia&cancers=180&survival=5.
43 Nolan EK , Chen HY . A comparison of the Cox model to the Fine-Gray model for survival analyses of re-fracture rates[J]. Arch Osteoporos, 2020, 15 (1): 86.
doi: 10.1007/s11657-020-00748-x
44 Putter H , Fiocco M , Geskus RB . Tutorial in biostatistics: Competing risks and multi-state models[J]. Stat Med, 2007, 26 (11): 2389- 2430.
doi: 10.1002/sim.2712
45 惠春霞, 陈文婕, 钱永刚, 等. 内蒙古自治区居民超重/肥胖多水平分析[J]. 慢性病学杂志, 2020, 21 (3): 319- 322.
46 王瑞琪, 杜茂林, 梁丹艳, 等. 内蒙古地区流动人口糖尿病影响因素的研究[J]. 现代预防医学, 2018, 45 (1): 155- 159.
47 Galovic M , Döhler N , Erdélyi-Canavese B , et al. Prediction of late seizures after ischaemic stroke with a novel prognostic model (the SeLECT score): A multivariable prediction model development and validation study[J]. Lancet Neurol, 2018, 17 (2): 143- 152.
doi: 10.1016/S1474-4422(17)30404-0
[1] 陈楚云,孙蓬飞,赵静,贾佳,范芳芳,王春燕,李建平,姜一梦,霍勇,张岩. 北京社区人群促红细胞生成素相关因素及其与10年心血管疾病风险的关系[J]. 北京大学学报(医学版), 2023, 55(6): 1068-1073.
[2] 马建勋,夏有辰,李比,赵红梅,雷玉涛,布希. 乳腺癌改良根治术后即刻乳房重建的方式选择[J]. 北京大学学报(医学版), 2023, 55(4): 612-618.
[3] 张紫薇,花语蒙,刘爱萍. 中国中老年人群抑郁症状、缺血性心血管疾病10年风险对心血管疾病的联合影响[J]. 北京大学学报(医学版), 2023, 55(3): 465-470.
[4] 张明露,刘秋萍,巩超,王佳敏,周恬静,刘晓非,沈鹏,林鸿波,唐迅,高培. 阿司匹林用于心血管病一级预防的不同策略比较:一项马尔可夫模型研究[J]. 北京大学学报(医学版), 2023, 55(3): 480-487.
[5] 董尔丹. 心血管受体的信号转导与疾病[J]. 北京大学学报(医学版), 2022, 54(5): 796-802.
[6] 王跃,张爽,张虹,梁丽,徐玲,程元甲,段学宁,刘荫华,李挺. 激素受体阳性/人表皮生长因子受体2阴性乳腺癌临床病理特征及预后[J]. 北京大学学报(医学版), 2022, 54(5): 853-862.
[7] 郭子宁, 梁志生, 周仪, 张娜, 黄捷. 基于国际疾病分类的心血管疾病亚型的基因组学研究[J]. 北京大学学报(医学版), 2021, 53(3): 453-459.
[8] 刘秋萍,陈汐瑾,王佳敏,刘晓非,司亚琴,梁靖媛,沈鹏,林鸿波,唐迅,高培. 基于马尔可夫模型的社区人群心血管病筛查策略的效果评价[J]. 北京大学学报(医学版), 2021, 53(3): 460-466.
[9] 陈家丽,金月波,王一帆,张晓盈,李静,姚海红,何菁,李春. 老年发病类风湿关节炎的临床特征及其心血管疾病危险因素分析:一项大样本横断面临床研究[J]. 北京大学学报(医学版), 2020, 52(6): 1040-1047.
[10] 徐涛,韩敬丽,姚伟娟. 雄激素剥夺治疗相关心血管疾病的机制与临床对策[J]. 北京大学学报(医学版), 2020, 52(4): 607-609.
[11] 刘欢,何映东,刘金波,黄薇,赵娜,赵红薇,周晓华,王宏宇. 血管健康指标对新发心脑血管事件的预测价值:北京血管健康分级标准的初步验证[J]. 北京大学学报(医学版), 2020, 52(3): 514-520.
[12] 宋国红,李惠平,邸立军,严颖,姜晗昉,徐玲,万冬桂,李瑛,王墨培,肖宇,张如艳,冉然,王环. 真实世界吡咯替尼治疗HER2阳性转移性乳腺癌的疗效及安全性[J]. 北京大学学报(医学版), 2020, 52(2): 254-260.
[13] 任川,吴晓月,赵威,陶立元,刘萍,高炜. 心肺适能对动脉粥样硬化性心血管疾病高危患者的保护作用[J]. 北京大学学报(医学版), 2020, 52(1): 152-157.
[14] 段丽萍,郑朝霞,张宇慧,董捷. 腹膜透析患者营养不良-炎症-心血管疾病与认知功能恶化的关系[J]. 北京大学学报(医学版), 2019, 51(3): 510-518.
[15] 司亚琴,唐迅,张杜丹,何柳,曹洋,王晋伟,李娜,刘建江,高培,胡永华. 北方农村人群心血管病一级预防筛查策略的评价[J]. 北京大学学报(医学版), 2018, 50(3): 443-449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!