北京大学学报(医学版) ›› 2017, Vol. 49 ›› Issue (4): 719-723. doi: 10.3969/j.issn.1671-167X.2017.04.031

• 技术方法 • 上一篇    下一篇

一种基于曲率连续算法的冠、根三维数据融合方法

赵一姣,刘怡,孙玉春,王勇△   

  1. (北京大学口腔医学院·口腔医院,口腔医学数字化研究中心,口腔修复教研室口腔数字化医疗技术和材料国家工程实验室卫生部口腔医学计算机应用工程技术研究中心口腔数字医学北京市重点实验室, 北京100081)
  • 出版日期:2017-08-18 发布日期:2017-08-18
  • 通讯作者: 王勇 E-mail:kqcadc@bjmu.edu.cn
  • 基金资助:
    国家高技术研究发展计划(863计划,2013AA040801)和国家自然科学基金(81300921)资助

Three-dimensional data fusion method for tooth crown and root based on curvature continuity algorithm#br#

ZHAO Yi-jiao, LIU Yi, SUN Yu-chun, WANG Yong△   

  1. (Center of Digital Dentistry, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Research Center of Engineering and Technology for Digital Dentistry of Ministry of Health & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China)
  • Online:2017-08-18 Published:2017-08-18
  • Contact: WANG Yong E-mail:kqcadc@bjmu.edu.cn
  • Supported by:
    Supported by the National High Technology Research and Development Program (“863” Program) of China (2013AA040801) and the National Natural Science Foundation of China (81300921)

摘要: 目的:探索一种光学扫描牙冠三维模型和锥形束CT(cone beam CT,CBCT)重建牙根三维模型的数据融合方法,实现不同来源冠、根模型的自然过渡融合。方法: 选取临床口腔正畸下颌牙列轻度拥挤患者1例,应用Mimics 17.0软件对患者CBCT数据重建带有牙根的牙列三维模型,并在Geomagic Stuido 2012软件中与患者高精度解剖形态的光学扫描牙列模型进行模型配准。对配准后的三维模型进行精确冠、龈边界线提取,边界线根向偏置及投影,冠、根边界线生成及模型剪裁等操作,并通过曲率连续算法实现不同来源冠、根模型的自然过渡缝合,完成冠、根三维融合模型的构建。结果:本研究基于商业化的软件平台,初步实现了针对光学扫描三维牙冠数据与CBCT三维牙根数据的曲率移形过渡融合方法,应用该方法完成了正畸临床10例牙列轻度拥挤患者冠、根三维融合模型的构建,融合模型由高年资医师主观打分评价,平均满意度8.6分(0~10分),初步验证了该方法的可行性和有效性。结论: 本研究的冠、根三维数据融合方法可获得逼近真实生理解剖形态的完整牙齿及牙列三维模型,其对复杂牙列拥挤及错颌畸形患者的适应性有待进一步研究。

关键词: 牙冠, 牙根, 三维图像融合, 锥形束CT, 牙颌模型

Abstract: Objective:To explore a three-dimensional (3D) data fusion and integration method of optical scanning tooth crowns and cone beam CT (CBCT) reconstructing tooth roots for their natural transition in the 3D profile. Methods: One mild dental crowding case was chosen from orthodontics clinics with full denture. The CBCT data were acquired to reconstruct the dental model with tooth roots by Mimics 17.0 medical imaging software, and the optical impression was taken to obtain the dentition model with high precision physiological contour of crowns by Smart Optics dental scanner. The two models were doing 3D registration based on their common part of the crowns’ shape in Geomagic Studio 2012 reverse engineering software. The model coordinate system was established by defining the occlusal plane. crown-gingiva boundary was extracted from optical scanning model manually, then crown-root boundary was generated by offsetting and projecting crown-gingiva boundary to the root model. After trimming the crown and root models, the 3D fusion model with physiological contour crown and nature root was formed by curvature continuity filling algorithm finally. In the study, 10 patients with dentition mild crowded from the oral clinics were followed up with this method to obtain 3D crown and root fusion models, and 10 high qualification doctors were invited to do subjective evaluation of these fusion models. Results: This study based on commercial software platform, preliminarily realized the 3D data fusion and integration method of optical scanning tooth crowns and CBCT tooth roots with a curvature continuous shape transition. The 10 patients’ 3D crown and root fusion models were constructed successfully by the method, and the average score of the doctors’ subjective evaluation for these 10 models was 8.6 points (0-10 points). which meant that all the fusion models could basically meet the need of the oral clinics, and also showed the method in our study was feasible and efficient in orthodontics study and clinics. Conclusion: The method of this study for 3D crown and root data fusion could obtain an integrate tooth or dental model more close to the nature shape. CBCT model calibration may probably improve the precision of the fusion model. The adaptation of this method for severe dentition crowding and micromaxillary deformity needs further research.

Key words: Tooth crown, Tooth root, Three-dimensional image fusion, Cone beam CT, Dental model

中图分类号: 

  •  
[1] 薄士仕,高承志. 基于卷积神经网络实现锥形束CT牙齿分割及牙位标定[J]. 北京大学学报(医学版), 2024, 56(4): 735-740.
[2] 代云飞,刘鹤,彭楚芳,姜玺军. 年轻恒牙牙髓再生治疗术后36个月的临床疗效评估[J]. 北京大学学报(医学版), 2023, 55(4): 729-735.
[3] 欧蒙恩,丁云,唐卫峰,周永胜. 基台边缘-牙冠的平台转移结构中粘接剂流动的三维有限元分析[J]. 北京大学学报(医学版), 2023, 55(3): 548-552.
[4] 章锦花,潘洁,孙志鹏,王霄. 不同根管内容物对口腔颌面锥形束CT诊断牙根纵裂准确性的影响[J]. 北京大学学报(医学版), 2023, 55(2): 333-338.
[5] 叶佳学,梁宇红. 牙髓专科医师应用锥形束CT的现况调查[J]. 北京大学学报(医学版), 2023, 55(1): 114-119.
[6] 潘孟乔,刘建,徐莉,徐筱,侯建霞,李小彤,王晓霞. 牙周-正畸-正颌联合治疗骨性安氏Ⅲ类错畸形患者下前牙牙周表型的长期观察[J]. 北京大学学报(医学版), 2023, 55(1): 52-61.
[7] 甄敏,孟焕新,胡文杰,武登诚,危伊萍. 改良牙冠延长术后组织愈合的动物实验研究[J]. 北京大学学报(医学版), 2022, 54(5): 927-935.
[8] 高娟,吕航苗,马慧敏,赵一姣,李小彤. 锥形束CT三维体积测量评估骨性Ⅲ类错正畸正颌治疗后的牙根吸收[J]. 北京大学学报(医学版), 2022, 54(4): 719-726.
[9] 冯莎蔚,国慧,王勇,赵一姣,刘鹤. 乳牙数字化参考牙冠模型的初步构建[J]. 北京大学学报(医学版), 2022, 54(2): 327-334.
[10] 刘伟涛,王怡然,王雪东,周彦恒. 锥形束CT研究上颌反复扩缩前方牵引后上颌骨缝的三维变化[J]. 北京大学学报(医学版), 2022, 54(2): 346-355.
[11] 孟圆,张丽琪,赵雅宁,柳登高,张祖燕,高岩. 67例上颌根尖周囊肿的三维影像特点分析[J]. 北京大学学报(医学版), 2021, 53(2): 396-401.
[12] 杨雨卉,黄一平,李巍然. 骨皮质切开加速正畸牙齿移动对牙根吸收的影响[J]. 北京大学学报(医学版), 2021, 53(2): 434-437.
[13] 刘建,王宪娥,吕达,乔敏,张立,孟焕新,徐莉,毛铭馨. 广泛型侵袭性牙周炎患者牙根形态异常与相关致病基因的关联[J]. 北京大学学报(医学版), 2021, 53(1): 16-23.
[14] 吴为良,曾筱,刘晓强,谭建国. 120例中国成年人上前牙美学比例分析[J]. 北京大学学报(医学版), 2020, 52(6): 1130-1134.
[15] 陈小贤,钟洁,闫文娟,张红梅,姜霞,黄芊,薛世华,刘星纲. 树脂冠修复乳前牙的临床效果评价[J]. 北京大学学报(医学版), 2020, 52(5): 907-912.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!