北京大学学报(医学版) ›› 2020, Vol. 52 ›› Issue (4): 730-737. doi: 10.19723/j.issn.1671-167X.2020.04.026

• 论著 • 上一篇    下一篇

能谱CT诊断非小细胞肺癌纵隔淋巴结转移的应用价值

朱巧,任翠,张艳,李美娇,王晓华()   

  1. 北京大学第三医院放射科,北京 100191
  • 收稿日期:2019-12-19 出版日期:2020-08-18 发布日期:2020-08-06
  • 通讯作者: 王晓华 E-mail:medwxh@126.com
  • 基金资助:
    国家自然科学基金(81871326)

Comparative imaging study of mediastinal lymph node from pre-surgery dual energy CT versus post-surgeron verifications in non-small cell lung cancer patients

Qiao ZHU,Cui REN,Yan ZHANG,Mei-jiao LI,Xiao-hua WANG()   

  1. Department of Radiology, Peking University Third Hospital, Beijing 100191, China
  • Received:2019-12-19 Online:2020-08-18 Published:2020-08-06
  • Contact: Xiao-hua WANG E-mail:medwxh@126.com
  • Supported by:
    National Natural Foundation of China(81871326)

摘要:

目的: 探讨能谱CT (dual energy CT, DECT) 诊断非小细胞肺癌 (non-small cell lung cancer, NSCLC) 纵隔淋巴结转移的应用价值。方法: 选择2018年4月至2019年10月在北京大学第三医院接受胸部DECT检查且经术后病理诊断证实的NSCLC患者病例资料进行回顾性分析,共收集到病例57 例,两名放射科医师共同分析患者术前CT图像,将轴位图像上所有短径 (short-axis diameter, S)≥5 mm的纵隔淋巴结纳入本研究。测量淋巴结形态学参数长径(long-axis diameter, L)、S、短径与长径比值(ratio of short-axis diameter to long-axis diameter, S/L)以及能谱参数动脉期及静脉期碘浓度 (iodine concentration, IC)、标准化碘浓度 (normalized iodine concentration, NIC)、能谱曲线斜率及有效原子序数。比较转移与非转移淋巴结形态学指标及其能谱参数的差异,将有统计学差异的参数纳入Logistic回归方程筛选出有诊断价值的参数,并生成诊断淋巴结转移的联合变量,对淋巴结S、静脉期NIC及联合变量进行受试者工作特征 (receiver operating characteristic, ROC)曲线分析。结果: 57例患者中,术后病理诊断证实转移淋巴结49 枚,非转移淋巴结938 枚。CT轴位上共检出S≥5 mm纵隔淋巴结163 枚 (转移淋巴结49 枚,非转移淋巴结114 枚)。转移淋巴结的S、L及S/L均显著大于非转移淋巴结 (P<0.05), 转移淋巴结的能谱参数均显著低于非转移性淋巴结 (P<0.05)。S是诊断淋巴结转移的最佳单一形态学指标,ROC曲线下面积 (area under curve, AUC) 为0.752,阈值8.5 mm,灵敏度67.4%,特异度73.7%,准确率71.8%。静脉期NIC为最佳单一能谱参数,AUC为0.861,阈值0.53,灵敏度95.9%,特异度70.2%,准确率77.9%。多因素分析显示S、静脉期NIC是转移淋巴结的独立预测因子。联合S、静脉期NIC诊断淋巴结转移的AUC为0.895,灵敏度 79.6%,特异度 87.7%,准确率85.3%,明显高于S (P<0.001)、静脉期NIC (P=0.037)。结论: DECT定量参数鉴别NSCLC患者纵隔淋巴结转移的价值优于形态学参数,联合S和静脉期NIC可提高术前诊断淋巴结转移的准确率。

关键词: 非小细胞肺癌, 淋巴结转移, 体层摄影术, X射线计算机

Abstract:

Objective: To validate the value of dual energy CT (DECT) in the differentiation of mediastinal metastatic lymph nodes from non-metastatic lymph nodes in non-small cell lung cancer (NSCLC). Methods: In the study, 57 surgically confirmed NSCLC patients who underwent enhanced DECT scan within 2 weeks before operation were enrolled. Two radiologists analyzed the CT images before operation. All mediastinal lymph nodes with short diameter≥5 mm on axial images were included in this study. The morphological parameters [long-axis diameter (L), short-axis diameter (S) and S/L of lymph nodes] and the DECT parameters [iodine concentration (IC), normalized iodine concentration (NIC), slope of spectral hounsfield unit curve (λHU) and effective atomic number (Zeff) in arterial and venous phase] were measured. The differences of morphological parameters and DECT parameters between metastatic and non-metastatic lymph nodes were compared. The parameters with significant difference were analyzed by the Logistic regression model, then a new predictive variable was established. Receiver operator characteristic (ROC) analyses were performed for S, NIC in venous phase and the new predictive variable. Results: In 57 patients, 49 metastatic lymph nodes and 938 non-metastatic lymph nodes were confirmed by surgical pathology. A total of 163 mediastinal lymph nodes (49 metastatic, 114 non-metastatic) with S≥5 mm were detected on axial CT images. The S, L and S/L of metastatic lymph nodes were significantly higher than those of non-metastatic lymph nodes (P<0.05). The DECT parameters of metastatic lymph nodes were significantly lower than those of non-metastatic lymph nodes (P<0.05). The best single morphological parameter for differentiation between metastatic and nonmetastatic lymph nodes was S (AUC, 0.752; threshold, 8.5 mm; sensitivity, 67.4%; specificity, 73.7%; accuracy, 71.8%). The best single DECT parameter for differentiation between metastatic and nonmetastatic lymph nodes was NIC in venous phase (AUC, 0.861; threshold, 0.53; sensitivity, 95.9%; specificity, 70.2%; accuracy, 77.9%). Multivariate analysis showed that S and NIC were independent predictors of lymph node metastasis. The AUC of combined S and NIC in the venous phase was 0.895(sensitivity, 79.6%; specificity, 87.7%; accuracy, 85.3%), which were significantly higher than that of S (P<0.001) and NIC (P=0.037). Conclusion: The ability of quantitative DECT parameters to distinguish mediastinal lymph node metastasis in NSCLC patients is better than that of morphological parameters. Combined S and NIC in venous phase can be used to improve preoperative diagnostic accuracy of metastatic lymph nodes.

Key words: Non-small cell lung cancer, Lymph node metastasis, Tomography, X-ray computed

中图分类号: 

  • R734.2

图1

患者女性,63岁,右肺下叶腺癌,T2bN2M0,纵隔4R区转移淋巴结"

图2

患者男性,71岁,右肺上叶腺癌,T1N0M0,纵隔4R区非转移淋巴结"

表1

转移与非转移淋巴结在纵隔各区的分布情况"

Group 2R 2L 3A 3P 4R 4L 5 6 7 8R 8L 9R 9L 10R 10L
Metastatic (n=49) 2 1 2 2 4 1 4 2 15 1 1 2 3 5 4
Non-metastatic (n=114) 1 0 0 1 14 19 8 7 28 4 0 5 1 15 11
Total 3 1 2 3 18 20 12 9 43 5 1 7 4 20 15

表2

形态学参数与能谱参数测量同一观察者、不同观察者一致性评价"

Items Doctor A Doctor A and B
ICC 95%CI ICC 95%CI
S 0.872 0.566-0.947 0.849 0.743-0.912
L 0.891 0.643-0.954 0.932 0.873-0.963
Arterial phase
IC 0.930 0.303-0.980 0.897 0.818-0.942
NIC 0.880 0.798-0.930 0.853 0.730-0.919
λHU 0.891 0.690-0.952 0.839 0.614-0.923
Zeff 0.949 0.723-0.982 0.920 0.864-0.954
Venous phase
IC 0.833 0.484-0.929 0.901 0.420-0.967
NIC 0.891 0.690-0.952 0.839 0.614-0.923
λHU 0.903 0.335-0.970 0.812 0.340-0.927
Zeff 0.869 0.150-0.960 0.927 0.874-0.958

表3

非小细胞肺癌纵隔转移与非转移淋巴结形态学特征比较 (x?±s)"

Group L/mm S/mm S/L
Metastatic (n=49) 13.10±2.99 9.90±2.55 0.76±0.09
Non-metastatic (n=114) 11.38±2.91 7.72±1.96 0.69±0.08
t 3.432 5.899 5.075
P 0.001 <0.001 <0.001

表4

非小细胞肺癌纵隔转移与非转移淋巴结能谱CT参数比较($\bar{x}±s$)"

Characteristic Metastatic (n=49) Non-metastatic (n=114) t P
Arterial phase
IC/(100 μg/cm3) 22.14±5.11 24.94±3.79 -3.448 <0.001
NIC 0.25±0.04 0.36±0.09 -10.300 <0.001
λHU 2.13±0.21 2.33±0.23 -5.194 <0.001
Zeff 8.07±0.46 8.34±0.51 -3.213 0.002
Venous phase
IC/(100 μg/cm3) 27.24±5.68 30.26±5.60 -3.139 0.002
NIC 0.43±0.07 0.60±0.14 -10.875 <0.001
λHU 2.46±0.31 2.84±0.29 -7.405 <0.001
Zeff 8.25±0.37 8.55±0.45 -4.052 <0.001

表5

形态学参数与能谱参数鉴别NSCLC纵隔淋巴结转移的ROC曲线分析结果"

Items AUC Sensitivity/% Specivicity/% Positive predictive
value/%
Negative predictive
value/%
Accuracy/%
Parameter threshold
S 8.50 0.752(0.672-0.832) 67.4(52.5-80.1) 73.7(64.6-81.5) 52.4(43.3-61.3) 84.0(77.6-88.8) 71.8(64.2 -78.5)
L 10.94 0.654(0.564-0.745) 79.6(65.7-89.8) 50.0(40.5-59.5) 40.6(35.2-46.3) 85.1(76.1-91.1) 58.9(50.9 -66.5)
S/L 0.76 0.734(0.644-0.825) 57.1(42.2-71.2) 84.2(76.2-90.4) 60.9(48.8-71.7) 82.1(76.6-86.4) 76.1(68.8-82.4)
Arterial phase
IC 22.23 0.660(0.561-0.759) 61.2(46.2-74.8) 70.2(60.9-78.4) 46.9(38.1-55.8) 80.8(74.4-85.9) 67.5(59.7-74.6)
NIC 0.31 0.850(0.793-0.908) 91.8(80.4-97.7) 69.3(60.0-77.6) 56.3(49.1-63.2) 95.2(88.5-98.1) 76.1(68.8-82.4)
λHU 2.11 0.754(0.674-0.834) 57.1(42.2-71.2) 84.2(76.2-90.4) 60.9(48.8-71.7) 82.1(76.6-86.4) 76.1(68.8-82.4)
Zeff 8.34 0.657(0.569-0.744) 73.5(58.9-85.1) 56.1(46.5-65.4) 41.9(35.5-48.5) 83.1(75.0-89.0) 61.4(53.4-68.9)
Venous phase
IC 25.56 0.643(0.544-0.742) 44.9(30.7-59.8) 83.3(75.2-89.7) 53.7(40.9-66.0) 77.9(73.0-82.1) 71.8(64.2-78.5)
NIC 0.53 0.861(0.806-0.915) 95.9(86.0-99.5) 70.2(60.9-78.4) 58.0(50.9-64.8) 97.6(91.1- 99.4) 77.9(70.8-84.0)
λHU 2.72 0.807(0.736-0.878) 81.6(68.0-91.2) 66.7(57.2-75.2) 51.3(44.0-58.5) 89.4(82.2-93.9) 71.2(63.6-78.0)
Zeff 8.74 0.701(0.624-0.779) 89.8(77.8-96.6) 52.6(43.1-62.1) 44.9(39.6-50.3) 92.3(83.7-96.6) 63.8(55.9-71.2)
LogitP 0.56 0.895(0.846-0.943) 79.6(65.7-89.8) 87.7(80.3-93.1) 73.6(62.6-82.3) 90.9(85.1- 94.6) 85.3(78.9-90.3)

图3

S、静脉期NIC与联合变量LogitP鉴别NSCLC纵隔转移与非转移淋巴结的ROC曲线"

[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018[J]. CA Cancer J Clin, 2018,68(1):7-30.
[2] Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods[J]. Int J Cancer, 2019,144(8):1941-1953.
doi: 10.1002/ijc.31937 pmid: 30350310
[3] 中华医学会, 中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肺癌临床诊疗指南(2018版)[J]. 中华肿瘤杂志, 2018,40(12):935-964.
[4] Torabi M, Aquino SL, Harisinghani MG. Current concepts in lymph node imaging[J]. J Nucl Med, 2004,45(9):1509-1518.
pmid: 15347718
[5] Vansteenkiste J, Dooms C, De Leyn P. Early stage non-small cell lung cancer: challenges in staging and adjuvant treatment: evidence-based staging[J]. Ann Oncol, 2010, 21(Suppl 7): vii189-vii195.
[6] 宁先英, 李浩, 杨明, 等. CT能谱定量分析对肺腺癌与鳞癌的鉴别诊断价值[J]. 放射学实践, 2017,32(3):237-241.
[7] Lv P, Lin XZ, Li J, et al. Differentiation of small hepatic hemangioma from small hepatocellular carcinoma: recently introduced spectral CT method[J]. Radiology, 2011,259(3):720-729.
doi: 10.1148/radiol.11101425 pmid: 21357524
[8] Martin SS, Weidinger S, Czwikla R, et al. Iodine and fat quantification for differentiation of adrenal gland adenomas from metas-tases using third-generation dual-source dual-energy computed tomography[J]. Invest Radiol, 2018,53(3):173-178.
pmid: 28990974
[9] Muenzel D, Lo GC, Yu HS, et al. Material density iodine images in dual-energy CT: detection and characterization of hypervascular liver lesions compared to magnetic resonance imaging[J]. Eur J Radiol, 2017,95(10):300-306.
doi: 10.1016/j.ejrad.2017.08.035
[10] Liu X, Ouyang D, Li H, et al. Papillary thyroid cancer: dual-energy spectral CT quantitative parameters for preoperative diagnosis of metastasis to the cervical lymph nodes[J]. Radiology, 2015,275(1):167-176.
pmid: 25521777
[11] De Leyn P, Vansteenkiste J, Cuypers P, et al. Role of cervical mediastinoscopy in staging of non-small cell lung cancer without enlarged mediastinal lymph nodes on CT scan[J]. Eur J Cardiothorac Surg, 1997,12(5):706-712.
doi: 10.1016/s1010-7940(97)00253-4 pmid: 9458140
[12] Fukuya T, Honda H, Hayashi T, et al. Lymph-node metastases: efficacy for detection with helical CT in patients with gastric cancer[J]. Radiology, 1995,197(3):705-711.
pmid: 7480743
[13] Yoshimura G, Sakurai T, Oura S, et al. Evaluation of axillary lymph node status in breast cancer with MRI[J]. Breast Cancer, 1999,6(3):249-258.
pmid: 11091725
[14] Li X, Meng X, Ye Z. Iodine quantification to characterize primary lesions, metastatic and non-metastatic lymph nodes in lung cancers by dual energy computed tomography: an initial experience[J]. Eur J Radiol, 2016,85(6):1219-1223.
doi: 10.1016/j.ejrad.2016.03.030 pmid: 27161073
[15] Rizzo S, Radice D, Femia M, et al. Metastatic and non-metastatic lymph nodes: quantification and different distribution of iodine uptake assessed by dual-energy CT[J]. Eur Radiol, 2018,28(2):760-769.
doi: 10.1007/s00330-017-5015-5 pmid: 28835993
[16] Yang Z, Zhang X, Fang M, et al. Preoperative diagnosis of regional lymph node metastasis of colorectal cancer with quantitative parameters from dual-energy CT[J]. AJR Am J Roentgenol, 2019,213(6):1-9.
[17] Zhang X, Zheng C, Yang Z, et al. Axillary sentinel lymph nodes in breast cancer: quantitative evaluation at dual-energy CT[J]. Radiology, 2018,289(2):337-346.
doi: 10.1148/radiol.2018180544 pmid: 30152748
[18] Yang F, Dong J, Wang X, et al. Non-small cell lung cancer: spectral computed tomography quantitative parameters for preoperative diagnosis of metastatic lymph nodes[J]. Eur J Radiol, 2017,89(4):129-135.
[19] Lin LY, Zhang Y, Suo ST, et al. Correlation between dual-energy spectral CT imaging parameters and pathological grades of non-small cell lung cancer[J]. Clin Radiol, 2018, 73(4): 412.e1-412.e7.
doi: 10.1016/j.crad.2017.10.020 pmid: 29195660
[20] 崔元龙, 许毛荣, 文智. 能谱CT定量参数对非小细胞肺癌纵隔淋巴结转移中的应用价值[J]. 临床放射学杂志, 2019,38(5):825-829.
[21] 叶亚君, 莫淑琼. CT能谱成像鉴别诊断纵隔淋巴结良恶性的临床意义[J]. 现代医用影像学, 2018,27(8):2702-2703.
[22] Pan Z, Pang L, Ding B, et al. Gastric cancer staging with dual energy spectral CT imaging[J]. PLoS One, 2013,8(2):e53651.
doi: 10.1371/journal.pone.0053651 pmid: 23424614
[23] Yang L, Luo D, Li L, et al. Differentiation of malignant cervical lymphadenopathy by dual-energy CT: a preliminary analysis[J]. Sci Rep, 2016,6(1):31020.
[1] 杨刚,胡文杰,曹洁,柳登高. 牙周健康的上颌前牙唇侧嵴顶上牙龈的三维形态分析[J]. 北京大学学报(医学版), 2021, 53(5): 990-994.
[2] 李新飞, 彭意吉, 余霄腾, 熊盛炜, 程嗣达, 丁光璞, 杨昆霖, 唐琦, 米悦, 吴静云, 张鹏, 谢家馨, 郝瀚, 王鹤, 邱建星, 杨建, 李学松, 周利群. 肾部分切除术前CT三维可视化评估标准的初步探究[J]. 北京大学学报(医学版), 2021, 53(3): 613-622.
[3] 周境,刘怡. 不同垂直骨面型骨性Ⅱ类青少年女性颞下颌关节锥形束CT测量分析[J]. 北京大学学报(医学版), 2021, 53(1): 109-119.
[4] 高璐,谷岩. 中国人群腭中缝形态特点分期与Demirjian牙龄的相关性[J]. 北京大学学报(医学版), 2021, 53(1): 133-138.
[5] 袁源,郎宁,袁慧书. CT能谱曲线在脊柱转移瘤和感染性病变中的鉴别诊断价值[J]. 北京大学学报(医学版), 2021, 53(1): 183-187.
[6] 李蓬,朴牧子,胡洪成,王勇,赵一姣,申晓婧. 经嵴顶上颌窦底提升术后不植骨同期种植的影像研究[J]. 北京大学学报(医学版), 2021, 53(1): 95-101.
[7] 欧阳雨晴,倪莲芳,刘新民. 恶性孤立性肺结节患者预后因素分析[J]. 北京大学学报(医学版), 2020, 52(1): 158-162.
[8] 李玉冰,孙丽莎,孙志鹏,谢晓艳,张建运,张祖燕,赵燕平,马绪臣. 腮腺CT影像报告与数据系统的初步研究[J]. 北京大学学报(医学版), 2020, 52(1): 83-89.
[9] 张旭初,张建华,王荣福,范岩,付占立,闫平,赵光宇,白艳霞. 18F-FDG PET/CT联合多种肿瘤标志物在结直肠中分化腺癌术后复发及转移中的应用价值[J]. 北京大学学报(医学版), 2019, 51(6): 1071-1077.
[10] 孙崇珂,张建运,孙志鹏,傅开元,赵燕平,张祖燕,马绪臣. 促结缔组织增生型成釉细胞瘤的CT影像特点[J]. 北京大学学报(医学版), 2019, 51(6): 1138-1143.
[11] 陶船思博,董凡,王佃灿,郭传瑸. 红外热成像技术诊断口腔鳞状细胞癌颈淋巴结转移[J]. 北京大学学报(医学版), 2019, 51(5): 959-963.
[12] 张春凤,刘云,陆敏,杜晓娟. hUTP14a在非小细胞肺癌组织中的表达[J]. 北京大学学报(医学版), 2019, 51(1): 145-150.
[13] 王怡然,周彦恒,王雪东,魏松,刘伟涛. 上颌反复扩缩前方牵引三维变化的锥形束CT分析[J]. 北京大学学报(医学版), 2018, 50(4): 685-693.
[14] 贾鹏程,杨刚,胡文杰,赵一姣,刘木清. 根尖片评估单根牙骨内牙根表面积的准确性[J]. 北京大学学报(医学版), 2018, 50(1): 91-97.
[15] 马静,江久汇. 骨性Ⅱ类和Ⅲ类高角错牙合患者下切牙区的牙槽骨形态分析[J]. 北京大学学报(医学版), 2018, 50(1): 98-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张三. 中文标题测试[J]. 北京大学学报(医学版), 2010, 42(1): 1 -10 .
[2] 赵磊, 王天龙 . 右心室舒张末期容量监测用于肝移植术中容量管理的临床研究[J]. 北京大学学报(医学版), 2009, 41(2): 188 -191 .
[3] 万有, , 韩济生, John E. Pintar. 孤啡肽基因敲除小鼠电针镇痛作用增强[J]. 北京大学学报(医学版), 2009, 41(3): 376 -379 .
[4] 张燕, 韩志慧, 钟延丰, 王盛兰, 李玲玲, 郑丹枫. 骨骼肌活组织检查病理诊断技术的改进及应用[J]. 北京大学学报(医学版), 2009, 41(4): 459 -462 .
[5] 赵奇, 薛世华, 刘志勇, 吴凌云. 同向施压测定自酸蚀与全酸蚀粘接系统粘接强度[J]. 北京大学学报(医学版), 2010, 42(1): 82 -84 .
[6] 林红, 王玉凤, 吴野平. 学校生活技能教育对小学三年级学生行为问题影响的对照研究[J]. 北京大学学报(医学版), 2007, 39(3): 319 -322 .
[7] 丰雷, 程嘉, 王玉凤. 注意缺陷多动障碍儿童的运动协调功能[J]. 北京大学学报(医学版), 2007, 39(3): 333 -336 .
[8] 李岳玲, 钱秋瑾, 王玉凤. 儿童注意缺陷多动障碍成人期预后及其预测因素[J]. 北京大学学报(医学版), 2007, 39(3): 337 -340 .
[9] . 书讯[J]. 北京大学学报(医学版), 2007, 39(3): 225 -328 .
[10] 牟向东, 王广发, 刁小莉, 阙呈立. 肺黏膜相关淋巴组织型边缘区B细胞淋巴瘤一例[J]. 北京大学学报(医学版), 2007, 39(4): 346 -350 .