北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (3): 572-577. doi: 10.19723/j.issn.1671-167X.2022.03.026

• 技术方法 • 上一篇    下一篇

熔融沉积成型3D打印卡托普利与氢氯噻嗪复方片剂的制备与体外评价

李志胜,钱浩楠,范田园*()   

  1. 北京大学药学院药剂学系, 北京大学药学院分子药剂学与新释药系统北京市重点实验室, 北京 100191
  • 收稿日期:2021-07-05 出版日期:2022-06-18 发布日期:2022-06-14
  • 通讯作者: 范田园 E-mail:tianyuan_fan@bjmu.edu.cn

Preparation and in vitro evaluation of fused deposition modeling 3D printed compound tablets of captopril and hydrochlorothiazide

Zhi-sheng LI,Hao-nan QIAN,Tian-yuan FAN*()   

  1. Department of Pharmaceutics, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
  • Received:2021-07-05 Online:2022-06-18 Published:2022-06-14
  • Contact: Tian-yuan FAN E-mail:tianyuan_fan@bjmu.edu.cn

RICH HTML

  

摘要:

目的: 探究以熔融沉积成型(fused deposition modeling, FDM)3D打印技术制备治疗高血压复方片剂的可行性, 并对所制备的FDM 3D打印复方片剂进行相关的体外质量评价。方法: 以聚乙烯醇(polyvinyl alcohol, PVA)丝材作为辅料, 设计了具有两个独立隔室的椭圆形片剂(长轴20 mm, 短轴10 mm, 高5 mm), 其层高为0.2 mm, 外壳厚为1.2 mm, 顶和底厚均为0.6 mm, 两个隔室间的隔断厚为0.6 mm。使用FDM 3D打印机进行打印; 以卡托普利(captopril, CTP)和氢氯噻嗪(hydrochlorothiazide, HCT)为模型药物, 将其分别填充在片剂的两个隔室内。以扫描电镜观察制剂的外观形态, 考察制剂的质量差异和硬度, 以高效液相色谱法测定制剂中的药物含量, 并用溶出仪对制剂的体外释药行为进行表征。结果: 所制备的FDM 3D打印复方片剂均形态良好, 无打印缺陷; 平均质量为(644.3±6.55) mg, 其中CTP含量为(52.3±0.26) mg, HCT含量为(49.6±0.74) mg。观察到CTP和HCT在体外的延迟释放, 延迟释药时间分别为20 min和40 min, 释药70%的时间分别在30 min和60 min内。结论: 采用FDM 3D打印技术成功制备了CTP和HCT复方片剂, 并且所打印的复方片剂质量良好。

关键词: 熔融沉积成型, 打印, 三维, 高血压, 复方合剂, 片剂

Abstract:

Objective: To explore the feasibility of preparing compound tablets for the treatment of hypertension by fused deposition modeling (FDM) 3D printing technology and to evaluate the quality of the printed compound tablets in vitro. Methods: Polyvinyl alcohol (PVA) filaments were used as the exci-pient to prepare the shell of tablet. The ellipse-shaped tablets (the length of major axes of ellipse was 20 mm, the length of the minor axes of ellipse was 10 mm, the height of tablet was 5 mm) with two separate compartments were designed and printed using FDM 3D printer. The height of layer was 0.2 mm, and the thickness of roof or floor was 0.6 mm. The thickness of shell was 1.2 mm, and the thickness of the partition wall between the two compartments was 0.6 mm. Two cardiovascular drugs, captopril (CTP) and hydrochlorothiazide (HCT), were selected as model drugs for the printed compound tablet and filled in the two compartments of the tablet, respectively. The microscopic morphology of the tablets was observed by scanning electron microscopy (SEM). The weight variation of the tablets was investigated by electronic scale. The hardness of the tablets was measured by a single-column mechanical test system. The contents of the drugs in the tablets were determined by high performance liquid chromatography (HPLC), and the dissolution apparatus was used to measure the in vitro drug release of the tablets. Results: The prepared FDM 3D printed compound tablets were all in good shape without printing defects. The average weight of the tablets was (644.3±6.55) mg. The content of CTP and HCT was separately (52.3±0.26) mg and (49.6±0.74) mg. A delayed in vitro release profile was observed for CTP and HCT, and the delayed release time for CTP and HCT in vitro was 20 min and 40 min, respectively. The time for 70% of CTP and HCT released was separately 30 min and 60 min. Conclusion: CTP and HCT compound tablets were successfully prepared by FDM 3D printing technology, and the printed tablets were of good qualities.

Key words: Fused deposition modeling, Printing, three-dimensional, Hypertension, Drug combinations, Tablets

中图分类号: 

  • R944.4

图1

3D打印复方片剂模型的设计"

图2

3D打印片剂的实物照片(20.0 mm×10.0 mm×5.0 mm)"

图3

3D打印片剂的扫描电镜照片"

表1

3D打印片剂的质量和质量差异"

Number 1 2 3 4 5 6 7 8 9 10
Weight/mg 652.5 632.7 645.6 652.7 650.6 633.9 642.6 644.2 642.9 646.0
Weight variation/% 1.27 -1.80 0.20 1.30 0.98 -1.61 -0.26 -0.02 -0.22 0.22

图4

3D打印片剂的应力-形变量曲线"

图5

3D打印片剂的体外溶出曲线"

1 Tan DK , Maniruzzaman M , Nokhodchi A . Advanced pharmaceutical applications of hot-melt extrusion coupled with fused deposition modelling (FDM) 3D printing for personalised drug delivery[J]. Pharmaceutics, 2018, 10 (4): 203.
doi: 10.3390/pharmaceutics10040203
2 Okafor-Muo OL , Hassanin H , Kayyali R , et al. 3D printing of solid oral dosage forms: Numerous challenges with unique opportunities[J]. J Pharm Sci, 2020, 109 (12): 3535- 3550.
doi: 10.1016/j.xphs.2020.08.029
3 Brambilla CRM , Okafor-Muo OL , Hassanin H , et al. 3D printing of oral solid formulations: A systematic review[J]. Pharmaceutics, 2021, 13 (3): 358.
doi: 10.3390/pharmaceutics13030358
4 Melocchi A , Parietti F , Loreti G , et al. 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs[J]. J Drug Deliv Sci Technol, 2015, 30 (Part B): 360- 367.
doi: 10.1016/j.jddst.2015.07.016
5 Lu J , Lu Y , Wang X , et al. Prevalence, awareness, treatment, and control of hypertension in China: Data from 1.7 million adults in a population-based screening study (China PEACE Million Persons Project)[J]. Lancet, 2017, 390 (10112): 2549- 2558.
doi: 10.1016/S0140-6736(17)32478-9
6 国家卫生计生委合理用药专家委员会, 中国医师协会高血压专业委员会. 高血压合理用药指南(第2版)[J]. 中国医学前沿杂志, 2017, 9 (7): 28- 126.
7 An J , Derington CG , Luong T , et al. Fixed-dose combination medications for treating hypertension: A review of effectiveness, safety, and challenges[J]. Curr Hypertens Rep, 2020, 22 (11): 95.
doi: 10.1007/s11906-020-01109-2
8 国家药典委员会. 中华人民共和国药典(二部)[M]. 北京: 中国医药科技出版社, 2020: 963
9 国家药典委员会. 中华人民共和国药典(四部)[M]. 北京: 中国医药科技出版社, 2020: 112, 137, 478.
10 Ghanizadeh Tabriz A , Nandi U , Hurt AP , et al. 3D printed bilayer tablet with dual controlled drug release for tuberculosis treatment[J]. Int J Pharm, 2021, 593, 120147.
doi: 10.1016/j.ijpharm.2020.120147
11 Charoenying T , Patrojanasophon P , Ngawhirunpat T , et al. Fabrication of floating capsule-in-3D-printed devices as gastro-retentive delivery systems of amoxicillin[J]. J Drug Deliv Sci Technol, 2020, 55, 100393.
12 Wang Y , Sun L , Mei Z , et al. 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma[J]. Materials & Design, 2020, 186, 108336.
doi: 10.1016/j.matdes.2019.108336
13 Kempin W , Domsta V , Grathoff G , et al. Immediate release 3D-printed tablets produced via fused deposition modeling of a thermo-sensitive drug[J]. Pharm Res, 2018, 35 (6): 124.
doi: 10.1007/s11095-018-2405-6
14 Homaee Borujeni S , Mirdamadian SZ , Varshosaz J , et al. Three-dimensional (3D) printed tablets using ethyl cellulose and hydroxypropyl cellulose to achieve zero order sustained release profile[J]. Cellulose, 2020, 27, 1573- 1589.
doi: 10.1007/s10570-019-02881-4
15 Fuenmayor E , Forde M , Healy AV , et al. Comparison of fused filament fabrication to direct compression and injection molding in the manufacture of oral tablets[J]. Int J Pharm, 2019, 558, 328- 340.
doi: 10.1016/j.ijpharm.2019.01.013
16 Yang Y , Wang H , Li H , et al. 3D printed tablets with internal scaffold structure using ethyl cellulose to achieve sustained ibuprofen release[J]. Eur J Pharm Sci, 2018, 115, 11- 18.
doi: 10.1016/j.ejps.2018.01.005
17 Mazzanti V , Malagutti L , Mollica F . FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties[J]. Polymers (Basel), 2019, 11 (7): 1094.
doi: 10.3390/polym11071094
18 Sadia M , Sosnicka A , Arafat B , et al. Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets[J]. Int J Pharm, 2016, 513 (1/2): 659- 668.
19 Melocchi A , Uboldi M , Briatico-Vangosa F , et al. The ChronotopicTM system for pulsatile and colonic delivery of active molecules in the era of precision medicine: Feasibility by 3D printing via fused deposition modeling (FDM)[J]. Pharmaceutics, 2021, 13 (5): 759.
doi: 10.3390/pharmaceutics13050759
20 The U.S. Food and Drug Administration. FDA-approved drugs: Captopril (018343): 2. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/020504s026lbl.pdf.
21 The U.S. Food and Drug Administration. FDA-approved drugs: Hydrochlorothiazide (084324): 2. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/018343s087lbl.pdf.
[1] 陈楚云,孙蓬飞,赵静,贾佳,范芳芳,王春燕,李建平,姜一梦,霍勇,张岩. 北京社区人群促红细胞生成素相关因素及其与10年心血管疾病风险的关系[J]. 北京大学学报(医学版), 2023, 55(6): 1068-1073.
[2] 开地尔娅·阿不都热合曼,张荣赓,钱浩楠,邹振洋,丹尼娅·叶斯涛,范田园. 个性化剂量熔融沉积成型3D打印茶碱片剂的制备和体外评价[J]. 北京大学学报(医学版), 2022, 54(6): 1202-1207.
[3] 梁喆,范芳芳,张岩,秦献辉,李建平,霍勇. 中国高血压人群中H型高血压的比率和特征及与美国人群的比较[J]. 北京大学学报(医学版), 2022, 54(5): 1028-1037.
[4] 马麟,吴静依,李双成,李鹏飞,张路霞. 抗高血压药物对二氧化氮长期暴露与慢性肾脏病关联的修饰效应[J]. 北京大学学报(医学版), 2022, 54(5): 1047-1055.
[5] 皇甫宇超,杜依青,于路平,徐涛. 原发性醛固酮增多症术后高血压未治愈的危险因素[J]. 北京大学学报(医学版), 2022, 54(4): 686-691.
[6] 陈迪,徐翔宇,汪明睿,李芮,臧根奥,张悦,钱浩楠,闫光荣,范田园. 熔融沉积成型3D打印盐酸维拉帕米胃漂浮制剂的制备与体外评价[J]. 北京大学学报(医学版), 2021, 53(2): 348-354.
[7] 杨航,杨林承,张瑞涛,凌云鹏,葛庆岗. 合并高血压、冠心病、糖尿病的新型冠状病毒肺炎患者发生病死的危险因素分析[J]. 北京大学学报(医学版), 2020, 52(3): 420-424.
[8] 郑鸿尘,薛恩慈,王雪珩,陈曦,王斯悦,黄辉,江锦,叶莺,黄春兰,周筠,高文静,余灿清,吕筠,吴小玲,黄小明,曹卫华,严延生,吴涛,李立明. 基于大家系设计的静息心率与常见慢性病双表型遗传度估计[J]. 北京大学学报(医学版), 2020, 52(3): 432-437.
[9] 孟文颖,黄琬桐,张杰,焦明远,金蕾,靳蕾. 孕早期血清维生素E水平与妊娠期高血压疾病发病风险的关系[J]. 北京大学学报(医学版), 2020, 52(3): 470-478.
[10] 刘颖,曾祥柱,王筝,张函,王希林,袁慧书. 三维动脉自旋标记技术评价抑郁合并高血压患者脑血流灌注[J]. 北京大学学报(医学版), 2019, 51(2): 260-264.
[11] 刘雪芹, 闫辉, 邱建星, 张春雨, 齐建光, 张欣, 肖慧捷, 杨艳玲, 陈永红, 杜军保. 甲基丙二酸尿症相关肺高血压临床特点与基因突变[J]. 北京大学学报(医学版), 2017, 49(5): 768-777.
[12] 单娇,李宏宇,刘国峰,杨玄,董伟,简伟研,邓芙蓉,郭新彪. 大气污染对中老年高血压和心脑血管疾病患者卫生服务需求的影响:基于 CHARLS数据的分析[J]. 北京大学学报(医学版), 2016, 48(3): 460-464.
[13] 章湖洋,简伟研,方海. 新型农村合作医疗的高血压患者门诊费用对住院费用的替代效应[J]. 北京大学学报(医学版), 2016, 48(3): 472-477.
[14] 杨莹超,刘国莉,周敬伟,胡浩,沈丹华. 妊娠合并嗜铬细胞瘤1例[J]. 北京大学学报(医学版), 2016, 48(2): 370-372.
[15] 陈红涛, 王文英, 王津, 梁亚平, 王小婷, 侯光敏, 姬爱平. 不同高血压分级患者急性牙髓炎开髓治疗的风险评估[J]. 北京大学学报(医学版), 2016, 48(1): 89-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!