北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (4): 663-668. doi: 10.19723/j.issn.1671-167X.2022.04.013

• 论著 • 上一篇    下一篇

肾癌免疫治疗疗效评估突变预测模型的建立

秦彩朋,宋宇轩,丁梦婷,王飞,林佳兴,杨文博,杜依青,李清,刘士军,徐涛*()   

  1. 北京大学人民医院泌尿外科,北京 100044
  • 收稿日期:2022-04-03 出版日期:2022-08-18 发布日期:2022-08-11
  • 通讯作者: 徐涛 E-mail:xutao@pkuph.edu.cn
  • 基金资助:
    国家自然科学基金(81872086)

Establishment of a mutation prediction model for evaluating the efficacy of immunotherapy in renal carcinoma

Cai-peng QIN,Yu-xuan SONG,Meng-ting DING,Fei WANG,Jia-xing LIN,Wen-bo YANG,Yi-qing DU,Qing LI,Shi-jun LIU,Tao XU*()   

  1. Department of Urology, Peking University People' s Hospital, Beijing 100044, China
  • Received:2022-04-03 Online:2022-08-18 Published:2022-08-11
  • Contact: Tao XU E-mail:xutao@pkuph.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(81872086)

摘要:

目的: 应用MSKCC(Memorial Sloan Kettering Cancer Center)泛癌免疫治疗队列肾癌患者的基因组测序数据建立疗效评估突变预测模型。方法: 针对MSKCC泛癌免疫治疗队列中121例接受免疫检查点抑制剂(immune checkpoint inhibitors, ICI)治疗的肾透明细胞癌患者基因组测序数据,应用Cox回归分析,鉴定与疗效相关的突变基因,并构建综合ICI药物疗效突变预测模型。结果: PBRM1ARID1A突变与MSKCC泛癌免疫治疗队列肾癌患者治疗效果相关,基于此建立了年龄、性别、治疗类型、肿瘤突变负荷、PBRM1ARID1A突变状态的疗效预测模型(1年生存AUC=0.700,2年生存AUC=0.825,3年生存AUC=0.776)。结论: PBRM1ARID1A突变可作为肾癌免疫治疗疗效评估的潜在生物标志物,基于以上两基因突变状态建立的的疗效预测模型可用以筛选更适宜接受ICI免疫治疗的肾癌患者。

关键词: 肾癌, 免疫检查点抑制剂, 基因突变, 疗效评估

Abstract:

Objective: To establish a mutation prediction model for efficacy assessment, the genomic sequencing data of renal cancer patients from the MSKCC (Memorial Sloan Kettering Cancer Center) pan-cancer immunotherapy cohort was used. Methods: The genomic sequencing data of 121 clear cell renal cell carcinoma patients treated with immune checkpoint inhibitors (ICI) in the MSKCC pan-cancer immunotherapy cohort were obtained from cBioPortal database (http://www.cbioportal.org/) and they were analyzed by univariate and multivariate Cox regression analysis to identify mutated genes associated with ICI treatment efficacy, and we constructed a comprehensive prediction model for drug efficacy of ICI based on mutated genes using nomogram. Survival analysis and time-dependent receiver operator characteristic curves were performed to assess the prognostic value of the model. Transcriptome and genomic sequencing data of 538 renal cell carcinoma patients were obtained from the TCGA database (https://portal.gdc.cancer.gov/). Gene set enrichment analysis was used to identify the potential functions of the mutated genes enrolled in the nomogram. Results: We used multivariate Cox regression analysis and identified mutations in PBRM1 and ARID1A were associated with treatment outcomes in the patients with renal cancer in the MSKCC pan-cancer immunotherapy cohort. Based on this, we established an efficacy prediction model including age, gender, treatment type, tumor mutational burden (TMB), PBRM1 and ARID1A mutation status (HR=4.33, 95%CI: 1.42-13.23, P=0.01, 1-year survival AUC=0.700, 2-year survival AUC=0.825, 3-year survival AUC=0.776). The validation (HR=2.72, 95%CI: 1.12-6.64, P=0.027, 1-year survival AUC=0.694, 2-year survival AUC=0.709, 3-year survival AUC=0.609) and combination (HR=2.20, 95%CI: 1.14-4.26, P=0.019, 1-year survival AUC=0.613, 2-year survival AUC=0.687, 3-year survival AUC=0.526) sets confirmed these results. Gene set enrichment analysis indicated that PBRM1 was involved in positive regulation of epithelial cell differentiation, regulation of the T cell differentiation and regulation of humoral immune response. In addition, ARID1A was involved in regulation of the T cell activation, positive regulation of T cell mediated cyto-toxicity and positive regulation of immune effector process. Conclusion: PBRM1 and ARID1A mutations can be used as potential biomarkers for the evaluation of renal cancer immunotherapy efficacy. The efficacy prediction model established based on the mutation status of the above two genes can be used to screen renal cancer patients who are more suitable for ICI immunotherapy.

Key words: Renal cell carcinoma, Immune checkpoint inhibitors, Gene mutation, Response evaluation

中图分类号: 

  • R737

表1

纳入分析队列患者的一般特征"

Characteristic MSKCC immunotherapy cohort (ccRCC)
(n=121)
Training set
(n=60)
Model validation set
(n=61)
P
Gender 0.56
  Male 90 (74.38) 46 (38.02) 44 (36.36)
  Female 31 (25.62) 14 (11.57) 17 (14.05)
Age 0.93
  >60 years 65 (53.72) 32 (26.45) 33 (27.27)
  ≤60 years 56 (46.28) 28 (23.14) 28 (23.14)
Drug type 0.45
  PD-1/PD-L1 94 (77.69) 45 (37.19) 49 (40.50)
  Combo* 27 (22.31) 15 (12.40) 12 (9.92)

图1

Cox比例风险分析PBRM1和ARID1A突变与接受ICI治疗患者预后的相关性"

图2

基因富集分析"

图3

肿瘤微环境免疫细胞浸润状态PPBRM1 (A)和ARID1A (B)突变诱导的肿瘤免疫微环境浸润细胞的变化"

图4

构建肾癌免疫治疗疗效预后模型"

1 Sung H , Ferlay J , Siegel RL , et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71 (3): 209- 249.
doi: 10.3322/caac.21660
2 Moch H , Cubilla AL , Humphrey PA , et al. The 2016 WHO classification of tumours of the urinary system and male genital organs: Part A: Renal, penile, and testicular tumours[J]. Eur Urol, 2016, 70 (1): 93- 105.
doi: 10.1016/j.eururo.2016.02.029
3 Ht C , McGovern F . Renal-cell carcinoma[J]. N Engl J Med, 2005, 353 (23): 2477- 2490.
doi: 10.1056/NEJMra043172
4 Bianchi M , Sun M , Jeldres C , et al. Distribution of metastatic sites in renal cell carcinoma: A population-based analysis[J]. Ann Oncol, 2012, 23 (4): 973- 980.
doi: 10.1093/annonc/mdr362
5 Everson TC , Cole WH . Spontaneous regression of cancer: Preliminary report[J]. Ann Surg, 1956, 144 (3): 366- 383.
doi: 10.1097/00000658-195609000-00007
6 Janiszewska AD , Poletajew S , Wasiutyński A . Spontaneous regression of renal cell carcinoma[J]. Contemp Oncol (Pozn), 2013, 17 (2): 123- 127.
7 Klapper JA , Downey SG , Smith FO , et al. High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma: A retrospective analysis of response and survival in patients treated in the surgery branch at the National Cancer Institute between 1986 and 2006[J]. Cancer, 2008, 113 (2): 293- 301.
doi: 10.1002/cncr.23552
8 Motzer RJ , Escudier B , McDermott DF , et al. Nivolumab versus everolimus in advanced renal-cell carcinoma[J]. N Engl J Med, 2015, 373 (19): 1803- 1813.
doi: 10.1056/NEJMoa1510665
9 Motzer RJ , Tannir NM , McDermott DF , et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma[J]. N Engl J Med, 2018, 378 (14): 1277- 1290.
doi: 10.1056/NEJMoa1712126
10 Plimack ER , Rini BI , Stus V , et al. Pembrolizumab plus axitinib versus sunitinib as first-line therapy for advanced renal cell carcinoma (RCC): Updated analysis of KEYNOTE-426[J]. J Clin Oncol, 2020, 38 (Suppl 15): 5001.
11 Samstein RM , Lee CH , Shoushtari AN , et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types[J]. Nat Genet, 2019, 51 (2): 202- 206.
doi: 10.1038/s41588-018-0312-8
12 Braun DA , Hou Y , Bakouny Z , et al. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma[J]. Nat Med, 2020, 26 (6): 909- 918.
doi: 10.1038/s41591-020-0839-y
13 McDermott DF , Huseni MA , Atkins MB , et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma[J]. Nat Med, 2018, 24 (6): 749- 757.
doi: 10.1038/s41591-018-0053-3
14 Braun DA , Ishii Y , Walsh AM , et al. Clinical validation of PBRM1 alterations as a marker of immune checkpoint inhibitor response in renal cell carcinoma[J]. JAMA Oncol, 2019, 5 (11): 1631- 1633.
doi: 10.1001/jamaoncol.2019.3158
15 Motzer RJ , Banchereau R , Hamidi H , et al. Molecular subsets in renal cancer determine outcome to checkpoint and angiogenesis blockade[J]. Cancer cell, 2020, 38 (6): 803- 817.
doi: 10.1016/j.ccell.2020.10.011
16 Hwang J , Kim H , Han J , et al. Identification of survival-specific genes in clear cell renal cell carcinoma using a customized next-generation sequencing gene panel[J]. J Pers Med, 2022, 12 (1): 113.
doi: 10.3390/jpm12010113
17 Bui TO , Feugeas JP , Pamoukdjian F , et al. Genomics of clear-cell renal cell carcinoma: A systematic review and meta-analysis[J]. Eur Urol, 2022, 81 (4): 349- 361.
doi: 10.1016/j.eururo.2021.12.010
18 Zhou C , Niu Y , Ma T , et al. The predictive values of ARID1A mutations for response to immune checkpoint inhibitors are varied in different types of solid tumors[J]. Cancer Res, 2021, 81 (Suppl 13): 1641.
19 De Velasco G , Miao D , Voss MH , et al. Tumor mutational load and immune parameters across metastatic renal cell carcinoma risk groups[J]. Cancer Immunol Res, 2016, 4 (10): 820- 822.
doi: 10.1158/2326-6066.CIR-16-0110
20 Chen DS , Mellman I . Elements of cancer immunity and the cancer-immune set point[J]. Nature, 2017, 541 (7637): 321- 330.
doi: 10.1038/nature21349
21 Binnewies M , Roberts EW , Kersten K , et al. Understanding the tumor immune microenvironment (TIME) for effective therapy[J]. Nat Med, 2018, 24 (5): 541- 550.
doi: 10.1038/s41591-018-0014-x
[1] 刘圣杰,侯惠民,吕政通,丁鑫,王璐,张磊,刘明. 双极雄激素序贯免疫检查点抑制剂治疗转移性去势抵抗性前列腺癌4例[J]. 北京大学学报(医学版), 2022, 54(4): 766-769.
[2] 刘茁,朱国栋,唐世英,洪鹏,赵勋,张启鸣,李丽伟,彭冉,陈志刚,王滨帅,张丽,杨飞龙,葛力源,孙争辉,张树栋,王国良,田晓军,张洪宪,马潞林. 外科手术治疗年龄≥75岁的高龄肾细胞癌合并静脉癌栓患者的临床经验[J]. 北京大学学报(医学版), 2022, 54(4): 774-778.
[3] 应沂岑,唐琦,杨恺惟,米悦,范宇,虞巍,宋毅,何志嵩,周利群,李学松. 泌尿肿瘤免疫检查点抑制剂相关性肌炎的临床特征[J]. 北京大学学报(医学版), 2022, 54(4): 644-651.
[4] 顾阳春,刘颖,谢超,曹宝山. 程序性死亡蛋白-1抑制剂治疗晚期肺癌出现垂体免疫不良反应3例[J]. 北京大学学报(医学版), 2022, 54(2): 369-375.
[5] 肖若陶,刘承,徐楚潇,何为,马潞林. 术前血小板参数与局部进展期肾细胞癌预后[J]. 北京大学学报(医学版), 2021, 53(4): 647-652.
[6] 洪鹏,田晓军,赵小钰,杨飞龙,刘茁,陆敏,赵磊,马潞林. 肾移植术后双侧乳头状肾癌1例[J]. 北京大学学报(医学版), 2021, 53(4): 811-813.
[7] 吴君怡,余淼,孙仕晨,樊壮壮,郑静蕾,张刘陶,冯海兰,刘洋,韩冬. 少汗性外胚层发育不良患者EDA基因突变检测及表型分析[J]. 北京大学学报(医学版), 2021, 53(1): 24-33.
[8] 徐帅,王旸烁,李纾,刘海鹰. 肾癌及脑膜瘤术后并发吉兰-巴雷综合征1例[J]. 北京大学学报(医学版), 2019, 51(4): 775-777.
[9] 李丽伟,刘茁,王国良,张华,陈文,马静,张丽,何为,马潞林,王淑敏. 肾癌伴下腔静脉瘤栓合并血栓的多种影像学比较[J]. 北京大学学报(医学版), 2019, 51(4): 678-683.
[10] 唐琦,林榕城,姚林,张争,郝瀚,张崔建,蔡林,李学松,何志嵩,周利群. 肾癌术后局部复发患者的临床病理特征及预后分析[J]. 北京大学学报(医学版), 2019, 51(4): 628-631.
[11] 尤柱,徐丽莉,李雪芬,张建运,杜菁,孙丽莎. 成釉细胞纤维瘤中BRAF突变基因的检测[J]. 北京大学学报(医学版), 2019, 51(1): 4-5.
[12] 王皓,刘洋,刘浩辰,韩冬,冯海兰. 先天性缺牙患者中BMP2基因突变检测及功能分析[J]. 北京大学学报(医学版), 2019, 51(1): 9-15.
[13] 张晓东,刘德若. 肺腺癌新分类与表皮生长因子受体基因突变之间的关系[J]. 北京大学学报(医学版), 2018, 50(4): 640-644.
[14] 曾鸿,容晓莹,张小青,郭向阳. 肾癌伴下腔静脉癌栓手术中应用回收式自体输血联合白细胞滤器2例[J]. 北京大学学报(医学版), 2017, 49(4): 736-739.
[15] 马彦, 王冬梅, 朱学骏. 一营养不良型大疱表皮松解症家系的基因突变[J]. 北京大学学报(医学版), 2002, 34(2): 171-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 柳晓辉, 那加, 刘玲玲, 罗斌. 头颈部血管肉瘤3例[J]. 北京大学学报(医学版), 2001, 33(3): 288 -289 .
[2] 陈倩, 郭燕燕. 妊娠合并慢性肾炎19例临床分析及随访[J]. 北京大学学报(医学版), 2002, 34(1): 93 -94 .
[3] 张震康. 口腔医学科学研究的重要进展和方向[J]. 北京大学学报(医学版), 2002, 34(2): 97 -98 .
[4] 郭应禄, 张凯. 临床研究所要创高水平医疗[J]. 北京大学学报(医学版), 2002, 34(5): 431 -433 .
[5] 方鹏骞, 徐娟, 张佳慧, 李翠, 杨芳, 孔鹏, 孙杨. 艾滋病高危人群规模间接估计方法的应用及其结果的外推研究[J]. 北京大学学报(医学版), 2008, 40(2): 214 -218 .
[6] 张勇, 栾庆先. 牙周维护治疗在保持牙周长期疗效中的作用[J]. 北京大学学报(医学版), 2011, 43(1): 29 -33 .
[7] 孙宇, 刘毅强, 冯国双, 李吉友. 转化生长因子β1在萎缩性胃炎发生中的作用[J]. 北京大学学报(医学版), 2009, 41(6): 635 -639 .
[8] 张少衡, 贾竹青, 郭静萱, 张萍, 马康涛, 王淑玲, 刘永刚, 李凌松, 周春燕. 骨髓细胞移植上调血管内皮生长因子及其受体的表达并改善缺血心脏功能[J]. 北京大学学报(医学版), 2003, 35(4): 429 -433 .
[9] 辛岗, 赵明辉, 丁焦生, 王海燕. 牛肾小球基底膜Ⅳ型胶原α链非胶原区1的分离纯化及其在抗肾小球基底膜相关疾病中的应用[J]. 北京大学学报(医学版), 2003, 35(5): 494 -498 .
[10] 李海霞, 屈晨雪, 徐国宾, 闫存玲, 张国华, 李传保, 王建中, 夏铁安. 检验科SARS标本检测安全管理介绍[J]. 北京大学学报(医学版), 2003, 35(z1): 92 -94 .