北京大学学报(医学版) ›› 2021, Vol. 53 ›› Issue (5): 995-1001. doi: 10.19723/j.issn.1671-167X.2021.05.031
LI Yuan,LIN Hong(),ZHANG Tie-jun
摘要:
目的: 分别采用传统胶片成像和数字成像测试牙科复合树脂材料的X射线阻射性,对比3种不同成像方式对X射线阻射性的影响。方法: 将临床常用的14种牙科复合树脂,分别制备成厚度为1.0 mm,直径15 mm的圆片。对同一个圆片试样,分别采用传统胶片成像(使用E速胶片)、数字成像(荧光成像板)和电荷耦合元件(charge-coupled device, CCD)口内X射线传感器,在相同的曝光条件下(管电压 65 kV,电流 7 mA,距离 300 mm,照射时间0.25 s),以楔状阶梯铝板作为参照物拍摄X线片。对于传统胶片成像获得的胶片,使用光密度计测量试样和楔状阶梯铝板各阶梯图像的光密度。对于数字成像获得的数字图像,输出到Adobe Photoshop®灰度分析软件,分析试样和楔状阶梯铝板各阶梯图像的平均灰度值。分别绘出楔状阶梯铝板各台阶的光密度/灰度值与其厚度相对应的曲线,并根据试样的实际测量厚度的光密度/灰度值,计算等效铝板厚度,以此评价牙科复合树脂材料的X射线阻射性。结果: 同一个试样片,传统胶片成像和其他两种数字成像测得的等效铝板厚度,14种复合树脂相比差异均有统计学意义(P<0.05),且两种数字成像测得的等效铝板厚度均大于传统胶片成像测得值。两种数字成像测得的等效铝板厚度也有差异,且多数复合树脂用CCD口内X射线传感器测得的等效铝板厚度大于荧光成像板测得值。同一样品,采用同一成像方式拍照,3次曝光获得的等效铝板厚度不同,其中荧光成像板测得的等效铝板厚度标准差最大,而CCD口内X射线传感器测得的等效铝板厚度标准差最小。14种复合树脂间,Tetric N-Ceram复合树脂和Te-Econom Plus复合树脂用传统胶片成像、荧光成像板拍照获得的等效铝板厚度值显著大于其他树脂。结论: 基于临床意义设计的3种传感器测得的等效铝板厚度值会根据传感器种类不同而改变,CCD口内X射线传感器测得值,荧光成像板测得值>传统胶片成像测得值,并且即使使用同一传感器,多次曝光获得的等效铝板厚度值也不同,其中荧光成像板测得的等效铝板厚度值标准差大于传统胶片成像和CCD口内X射线传感器测得值。在评价复合树脂的X射线阻射性时,3种传感器都可以检测复合树脂的X射线阻射性,但无论采用何种传感器,等效铝板厚度值均应符合ISO 4049: 2019标准的规定,该树脂才可以判定为合格产品,材料才适用于临床。
中图分类号:
[1] |
Poorterman JHG, Aartman IHA, Kalsbeek H. Underestimation of the prevalence of approximal caries and inadequate restorations in a clinical epidemiological study [J]. Community Dent Oral, 1999, 27(5):331-337.
pmid: 10503793 |
[2] | Mjor IA. The location of clinically diagnosed secondary caries [J]. Quintessence Int, 1998, 29:313-317. |
[3] |
Soares CJ, Rosatto CMP, Carvalho VF, et al. Radiopacity and porosity of bulk-fill and conventional composite posterior restorations-digital X-ray analysis [J]. Oper Dent, 2017, 42(6):616-625.
doi: 10.2341/16-146-L pmid: 28976845 |
[4] |
Tarcin B, Gumru B, Peker S, et al. Evaluation of radiopacity of bulk-fill flowable composites using digital radiography [J]. Oper Dent, 2016, 41(4):424-431.
doi: 10.2341/15-153-L pmid: 27045286 |
[5] |
Watts DC, McCabe JF. Aluminium radiopacity standards for dentistry: an international survey [J]. J Dent, 2006, 27(1):73-78.
doi: 10.1016/S0300-5712(98)00025-6 |
[6] | 全国口腔材料和器械设备标准化技术委员会. 牙科学测定材料的X射线阻射性试验方法:YY/T 1646-2019 [S]. 北京: 中国标准出版社, 2019: 1. |
[7] |
Gurdal P, Akdeniz BG. Comparison of two methods for radiometric evaluation of resin-based restorative materials [J]. Dentomaxillofac Radiol, 1998, 27(4):236-239.
doi: 10.1038/sj.dmfr.4600357 |
[8] |
Hara AT, Serra MG, Rodrigues JA. Radiopacity of glass-ionomer composite resin hybrid materials [J]. Braz Dent J, 2001, 12(2):85-89.
pmid: 11445919 |
[9] |
Tanomaru-Filho M, Jorge EG, Guerreiro TJ, et al. Radiopacity evaluation of new root canal filling materials by digitalization of images [J]. J Endod, 2007, 33(3):249-251.
doi: 10.1016/j.joen.2006.08.015 |
[10] | 孙涛. DR成像技术的临床应用分析 [J]. 临床医药文献杂志, 2015, 2(8):1523. |
[11] | 温建伟. CR与DR性能影像特点及其临床应用的比较研究 [J]. 中国继续医学教育, 2016, 8(14):53-54. |
[12] | Arita ES, Silveira GP, Cortes AR, et al. Comparative study between the radiopacity levels of high viscosity and of flowable composite resins, using digital imaging [J]. Eur J Esthet Dent, 2012, 7(4):430-438. |
[13] | Filling and restorative materials. ISO 4049: 2019 [S/OL]. [2021-04-13]. https://www.iso.org/obp/ui/#iso:std:iso:4049:ed-5:v1:en . |
[14] |
Lachowski KM, Botta SB, Lascala CA, et al. Study of the radio-opacity of base and liner dental materials using a digital radiography system [J]. Dentomaxillofac Radiol, 2013, 42(2):20120153.
doi: 10.1259/dmfr.20120153 |
[15] |
Rasimick BJ, Gu S, Deutsch AS, et al. Measuring the radiopacity of luting cements, dowels, and core build-up materials with a digital radiography system using a CCD sensor [J]. J Prosthodont, 2007, 16(5):357-364.
pmid: 17559533 |
[16] |
Akcay I, Ilhan B, Dundar N. Comparison of conventional and digital radiography systems with regard to radiopacity of root canal filling materials [J]. Int Endod J, 2012, 45(8):730-736.
doi: 10.1111/j.1365-2591.2012.02026.x pmid: 22458866 |
[17] |
R Kapila, Y Matsuda, K Araki, et al. Radiopacity measurement of restorative resins using film and three digital systems for comparison with ISO 4049 international standard [J]. Bull Tokyo Dent Coll, 2015, 56(4):207-214.
doi: 10.2209/tdcpublication.56.207 |
[18] | 赵信义. 口腔材料学 [M]. 北京: 人民卫生出版社, 2020: 77. |
[19] | 王亮亮. CR、DR系统的图像质量控制及影响因素 [J]. 黑龙江医药, 2017, 30(2):426-427. |
[1] | 杨洋,浦婷婷,陈立,谭建国. 比较两种改良式印章法辅助后牙树脂牙合贴面修复的形态准确性[J]. 北京大学学报(医学版), 2021, 53(5): 977-982. |
[2] | 穆海丽,田福聪,王晓燕,高学军. 玻璃体和通用型复合树脂耐磨性的临床对照研究[J]. 北京大学学报(医学版), 2021, 53(1): 120-125. |
[3] | 于鹏,王晓燕. 填料折射率与比例对复合树脂折射率和透明度的影响[J]. 北京大学学报(医学版), 2020, 52(4): 790-793. |
[4] | 唐仁韬,李欣海,于江利,冯琳,高学军. 复合树脂与玻璃陶瓷微拉伸粘接强度的体外研究[J]. 北京大学学报(医学版), 2020, 52(4): 755-761. |
[5] | 李贝贝,邸萍. CAD/CAM钛合金表面处理工艺联合树脂粘接剂对硬质复合树脂粘接强度和耐久性的影响[J]. 北京大学学报(医学版), 2019, 51(1): 111-114. |
[6] | 郭惠杰,高承志, 林斐,刘伟,岳林. 唾液污染对复合树脂间粘接强度的影响[J]. 北京大学学报(医学版), 2017, 49(1): 96-100. |
[7] | 林斐, 刘伟, 闫鹏, 岳林. 复合树脂间粘接的微拉伸强度研究[J]. 北京大学学报(医学版), 2015, 47(1): 124-128. |
[8] | 蔡雪, 聂杰, 王祖华, 田洪琰, 赵莹, 王晓燕. 洞缘形态对复合树脂颜色匹配的影响[J]. 北京大学学报(医学版), 2015, 47(1): 120-123. |
[9] | 田福聪,王晓燕,高学军. 不同粘接系统用于楔状缺损直接修复的临床观察[J]. 北京大学学报(医学版), 2014, 46(1): 58-61. |
[10] | 袁慎坡, 林红, 潘硕, 娄丽丽, 徐永祥. Polident义齿清洁剂对义齿基托树脂性能的影响[J]. 北京大学学报(医学版), 2012, 44(6): 946-949. |
[11] | 徐永祥, 韩建民, 林红. 自黏性流动树脂的性能研究[J]. 北京大学学报(医学版), 2012, 44(2): 303-306. |
[12] | 高博韬, 郑刚, 林红, 徐永祥. 实时动态分析牙科光固化复合树脂固化收缩的新方法[J]. 北京大学学报(医学版), 2011, 43(6): 895-899. |
[13] | 韩冰, 董艳梅, 王晓燕, 高学军. 光照模式对复合树脂聚合收缩率和表面硬度的影响[J]. 北京大学学报(医学版), 2011, 43(5): 770-773. |
[14] | 赵奇*, 薛世华*, 吴艳, 王世明. 应用龈色树脂修复前牙颈部缺损的临床评价[J]. 北京大学学报(医学版), 2011, 43(1): 44-47. |
[15] | 韩冰, 王晓燕, 高学军. 光功率密度对光固化复合树脂耐老化性能的影响[J]. 北京大学学报(医学版), 2011, 43(1): 58-61. |
|