北京大学学报(医学版) ›› 2017, Vol. 49 ›› Issue (5): 840-846. doi: 10.3969/j.issn.1671-167X.2017.05.017

• 论著 • 上一篇    下一篇

负载NY-ESO-1多肽的树突状细胞激发特异性细胞毒性T淋巴细胞反应

刘静维1, 卢戌1, 杨照敏1, 邓丽娟1, 杨林2   

  1. 1. 北京康爱瑞浩生物科技股份有限公司,北京 101318;
    2. 国家癌症中心/中国医学科学院,北京协和医学院肿瘤医院,北京 100021
  • 收稿日期:2016-01-20 出版日期:2017-10-18 发布日期:2017-10-18

Immune effects of specific CTLs response induced by dendritic cells pulsed with NY-ESO-1 peptide

LIU Jing-wei1, LU Xu1, YANG Zhao-min1, DENG Li-juan1, YANG Lin2   

  1. 1. Beijing Biohealthcare Biotechnology Co. Ltd, Beijing 101318, China;
    2. National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
  • Received:2016-01-20 Online:2017-10-18 Published:2017-10-18

摘要: 目的 探讨以NY-ESO-1为靶抗原、树突状细胞(dendritic cell, DCs)为抗原载体激发特异性细胞毒性T淋巴细胞(cytotoxic T lymphocytes,CTLs)反应的能力,以明确特异性CTLs的抗肿瘤免疫功能。方法在临床前实验基础上选择2014年11月至2015年10月于中国医学科学院肿瘤医院治疗的符合入选标准的15例Ⅱ~Ⅲ期HLA-A0201+NY-ESO-1+胃癌患者外周血,分离单个核细胞 (peripheral blood mononuclear cells, PBMCs) 和外周血淋巴细胞(peripheral blood lymphocytes, PBLs), 并诱导出成熟DCs (mature dendritic cell, mDCs);将人工合成的NY-ESO-1多肽负载mDCs后通过流式细胞仪(flow cytometry,FCM)分析细胞表型,检测体外反复致敏PBLs后负载NY-ESO-1的DCs激发特异性CTLs的能力以及CTLs对NY-ESO-1+胃癌细胞的体外杀伤活性,同时患者回输CTLs细胞,每2周1次,共回输2次,检测回输前后患者外周血细胞因子和特异性CTLs水平变化。结果采用FCM分析DCs细胞表型显示HLA-DR+CD11c+细胞为93.6%±1.2%,其中CD80+细胞为87.3%±3.6%,CD83+细胞为82.8%±2.5%,CD86+细胞为93.4%±6.4%。患者外周血分离的PBLs经NY-ESO-1多肽负载的DCs反复诱导后,细胞不断增殖,其中未负载多肽的DCs也能促进PBLs增殖,但细胞增殖指数(proliferation index, PI)明显低于负载多肽的DCs,两者比较差异有统计学意义(P<0.05)。负载NY-ESO-1多肽DCs诱导的NY-ESO-1多肽特异性的CTLs比例较未负载NY-ESO-1多肽DCs诱导的对照组明显升高(5.2%±1.2% vs. 0.4%±0.1%,P<0.05),且致敏后CTLs对NY-ESO-1+胃癌细胞及负载NY-ESO-1 +多肽T2靶细胞的杀伤率明显高于对照组。输注CTLs细胞后,患者体内血清中细胞因子IFN-γ、IL-2、IL-12水平较治疗前显著升高[(132.9±10.2) μg/L vs. (46.4±3.1) μg/L; (101.3±6.4) μg/L vs. (26.7±1.2) μg/L; (51.3±2.6) μg/L vs. (26.4±1.1) μg/L; P均<0.05],且患者外周血特异性CTLs细胞比例明显升高。结论 负载NY-ESO-1多肽的DCs体内外均具有激发特异性CTLs反应的能力,可诱导明显的抗肿瘤免疫效应。

关键词: T淋巴细胞, 细胞毒性, 免疫, 抗原, 肽类, 免疫治疗, 数突状细胞, NY-ESO-1多肽

Abstract: Objective: To explore the potential of autologous dendritic cells (DCs) pulsed with caner/testis antigen NY-ESO-1 peptides in inducing specific cytotoxic T lymphocyte (CTLs) response and antineoplastic immune function of specific CTLs. Methods: Fifteen patients with Ⅱ to Ⅲ stage positive HLA-A0201+ and NY-ESO-1+ were enrolled in the Cancer Hospital Chinese Academy of Medical Sciences on the basis of preclinical experiments from November 2014 to October 2015, and their peripheral blood mononuclear cells (PBMCs) and peripheral blood lymphocytes (PBLs) were isolated. The PBMCs were induced into DCs and pulsed with NY-ESO-1 peptide. The phenotypes of DCs were stained with antibodies against HLA-DR+CD11c+,CD80+,CD83+ and CD86+, and subsequently analyzed by multichannel flow cytometry (FCM). The killing effects of CTLs pulsed with HLA-A0201-binding peptide NY-ESO-1 and the potential of autologous DCs pulsed with NY-ESO-1 peptides in inducing specific cytotoxic T lymphocytes (CTLs) responses were determined. The patients were administered two infusions of auto-logous CTLs for 1 time every two weeks. The total infusion was with 2 times. The immunological responses and clinical responses were examined in 1 week after the final administration. Results: The immunophenotype of DCs pulsed with NY-ESO-1 peptide was analyzed, HLA-DR+CD11c+ cells (93.6%±1.2%), CD80+ cells (87.3%±3.6%), CD83+ cells (82.8%±2.5%) and CD86+ cells (93.4%±6.4%). PBLs isolated from patients primed by DCs pulsed with NY-ESO-1 peptide proliferated continuously and the proliferation index (PI) of the PBLs were analyzed. There was significant difference between the DCs loaded with polypeptides and those unloaded, though it could promote the proliferation of PBLs, but the PI was significantly lower than that of the DCs loaded with NY-ESO-1 peptide (P<0.05). The average percentage of special CTLs primed by DCs pulsed with NY-ESO-1 peptides was significantly higher than that in the control group (5.2%±1.2% vs. 0.4%±0.1%). CTLs induced by NY-ESO-1 pulsed DCs exerted a stronger killing effect on T2 cell line pulsed with NY-ESO-1 peptide than that in the control group at the ratio of E (effect) to T (target) as 30︰1, P<0.05. The cytokine levels in the patients’sera such as IFN-γ, IL-2 and IL-12 were increased after treatments [(132.9±10.2) μg/L vs. (46.4±3.1) μg/L; (101.3±6.4) μg/L vs. (26.7±1.2) μg/L; (51.3±2.6) μg/L vs. (26.4±1.1) μg/L; all P<0.05], and the percentages of antigen-specific CD8+IFN-γ+ increased in these patients (P<0.01). Conclusion:Auto-DCs pulsed with NY-ESO-1 peptides can induce the proliferation of allogenic CTLs, which elicit specific immune responses ex vivo or in vivo, and boost anticancer immunity markedly.

Key words: T-lymphocytes, cytotoxic, Immunity, Antigens, Peptides, Immunotherapy, Dendritic cell, NY-ESO-1 peptide

中图分类号: 

  • R730.51
[1] Varadhachary G, Ajani JA. Gastric cancer[J].Clin Adv Hematol Oncol, 2005, 3(2): 118-124.
[2] Ajani JA.Evolving chemotherapy for advanced gastric cancer[J].Oncologist, 2005, 10(3): 49-58.
[3] Yoshihara M, Hiyama T, Yoshida S, et al.Reduction in gastric cancer mortality by screening based on serum pepsinogen concentration: a case-control study[J].Scand J Gastroenterol, 2007, 42(6): 760-764.
[4] Larmonier N, Fraszczak J, Lakomy D, et a1.Killer dendritic cells and their potential for cancer immunotherapy[J].Cancer Immunol Immunother, 2010, 59(1): 1-11.
[5] Rosenberg SA, Restifo NP, Yang JC, et a1. Adoptive cell transfer:a clinical path to effective cancer immunotherapy[J]. Nat Rev Cancer, 2008, 8(4): 299-308.
[6] Gnjatic S, Atanackovic D, Jager E, et al. Survey of naturally occurring CD4+ T cell responses against NY-ESO-1 in cancer patients: correlation with antibody responses [J] . Proc Natl Acad Sci USA, 2003, 100(15): 8862-8867.
[7] Simone K, Cristina B, Judith F, et al. Rapid generation of NY-ESO-1-specific CD4 + T HELPER 1 cells for adoptive T-cell therapy [J]. OncoImmunology, 2015, 4(5): e1002723.
[8] Park TS, Groh EM, Patel K, et al. Expression of MAGE-A and NY-ESO-1 in primary and metastatic cancers[J].J Immunother, 2016, 39(1): 1-7.
[9] Scanlan M J, Altorki NK, Gure AO, et al. Expression of cancer-testis antigens in lung cancer: definition of bromodoma in testis-specific gene (BRDT) as a new CT gene, CT9 [J]. Cancer Lett, 2000, 150(2): 155-164.
[10] Luo G, Huang S, Xie X, et al. Expression of cancer-testis genes in human hepatocellular carcinomas [J] . Cancer Immun, 2002, 19(2): 11.
[11] Ghafouri-Fard S, Shamsi R, Seifi-Alan M, et al. Cancer-testis genes as candidates for immunotherapy in breast cancer[J]. Immunotherapy, 2014, 6(2): 165-179.
[12] Lee HJ, Kim JY, Song IH, et al. Expression of NY-ESO-1 in triple-negative breast cancer is associated with tumor-infiltrating lymphocytes and a good prognosis[J]. Oncology, 2015, 89(6): 337-344.
[13] Mashino K, Sadanaga N, Tanaka F, et al. Expression of multiple cancer-test is antigen genes in gastrointestinal and breast carcinomas [J]. Br J Cancer, 2001, 85(5): 713-720.
[14] Galluzzi L, Senovilla L, Vacchelli E, et al. Trial watch: dendritic cell-based interventions for cancer therapy [J]. Oncoimmunology, 2012, 2(10): 1111-1134.
[15] Paezesny S, Sift FI, Saito H, et a1.Measuring melanoma-specific cytotoxic T lymphocytes elicited by dendritic cell vaccine with a tumor inhibition assay in vitro [J].J lmmunolher, 2005, 28(2): 148-157.
[16] Shi H, Cao T, Connolly JE, et al. Hyperthermia enhances CTL cross-priming [J]. J Immunol, 2006, 176(4): 2134-2141.
[17] 虞淦军, 万涛. NY-ESO-1 抗原的基础与临床研究进展[J].中国肿瘤生物治疗杂志, 2015, 22(1): 104-111.
[18] 陈军, 尚小云, 唐波, 等. 胃癌、食管癌中NY-ESO-1抗原特异性免疫应答与生存率的关系研究[J]. 第三军医大学学报, 2009, 31(10): 984-986.
[19] 吴晓江, 王俞欠, 季加孚,等.胃癌中肿瘤/睾丸抗原的表达研究及NY-ESO-1蛋白的自身抗体检测[J]. 北京大学学报(医学版), 2005, 37(3): 252-256.
[20] Rapoport AP, Stadtmauer EA, Binder-Scholl GK, et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma [J]. Nat Med, 2015, 21(8): 914-921.
[21] Robbins PF, Li YF, El-Gamil M, et al. Single and dual amino acid substitutions in TCR CDRs can enhance antigen-specific T cell functions [J]. J Immunol, 2008, 180(9): 6116-6131.
[22] Fourcade J, Sun Z, Benallaoua M, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8 + T cell dysfunction in melanoma patients[J]. J Exp Med, 2010, 207(10): 2175-2186.
[23] Zitvogel L, Galluzzi L, Smyth MJ, et al. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance [J]. Immunity, 2013, 39(1): 74-88.
[1] 武志慧, 胡明智, 赵巧英, 吕凤凤, 张晶莹, 张伟, 王永福, 孙晓林, 王慧. miR-125b-5p修饰脐带间充质干细胞对系统性红斑狼疮的免疫调控机制[J]. 北京大学学报(医学版), 2024, 56(5): 860-867.
[2] 刘家骏, 刘国康, 朱玉虎. 免疫相关性重症肺炎1例[J]. 北京大学学报(医学版), 2024, 56(5): 932-937.
[3] 柴晓东,孙子文,李海爽,朱靓怡,刘小旦,刘延涛,裴斐,常青. 髓母细胞瘤分子亚型中CD8+T淋巴细胞浸润的临床病理特点[J]. 北京大学学报(医学版), 2024, 56(3): 512-518.
[4] 韩艺钧,李常虹,陈秀英,赵金霞. 抗SSB抗体阳性和阴性的原发性干燥综合征患者临床及免疫学特征的比较[J]. 北京大学学报(医学版), 2023, 55(6): 1000-1006.
[5] 洪丽荣,陈雨佳,江庆来,贾汝琳,李春,冯亮华. 新型血栓四项联合常规凝血指标预测抗磷脂综合征患者血栓形成的价值[J]. 北京大学学报(医学版), 2023, 55(6): 1033-1038.
[6] 孟彦宏,陈怡帆,周培茹. CENP-B抗体阳性的原发性干燥综合征患者的临床和免疫学特征[J]. 北京大学学报(医学版), 2023, 55(6): 1088-1096.
[7] 扶琼,叶霜. 嵌合抗原受体T细胞治疗在自身免疫疾病中的应用和思考[J]. 北京大学学报(医学版), 2023, 55(6): 953-957.
[8] 刘欢锐,彭祥,李森林,苟欣. 基于HER-2相关基因构建风险模型用于膀胱癌生存预后评估[J]. 北京大学学报(医学版), 2023, 55(5): 793-801.
[9] 史佳琪,马莺,张奕,陈章健,贾光. 纳米二氧化钛颗粒对人肝癌细胞HepG2中circRNA表达谱的影响[J]. 北京大学学报(医学版), 2023, 55(3): 392-399.
[10] 张远锦,马婧玥,刘向一,郑丹枫,张英爽,李小刚,樊东升. 抗HMGCR抗体介导的自身免疫坏死性肌病1例[J]. 北京大学学报(医学版), 2023, 55(3): 558-562.
[11] 沈棋,刘亿骁,何群. 肾黏液样小管状和梭形细胞癌的临床病理特点及预后[J]. 北京大学学报(医学版), 2023, 55(2): 276-282.
[12] 李东,邸吉廷,熊焰. 程序性细胞死亡1-配体1在不同免疫组织化学染色方法的一致性比较[J]. 北京大学学报(医学版), 2023, 55(2): 339-342.
[13] 熊焰,张波,聂立功,吴世凯,赵虎,李东,邸吉廷. 胸部SMARCA4缺失性未分化肿瘤的病理诊断与联合免疫检测点抑制剂治疗[J]. 北京大学学报(医学版), 2023, 55(2): 351-356.
[14] 俞光岩,宿骞,张艳,吴立玲. 唾液腺疾病与全身系统性疾病的相关性[J]. 北京大学学报(医学版), 2023, 55(1): 1-7.
[15] 包文晗,唐雯. 初诊IgA肾病患者的肠道菌群及其与疾病进展因素的相关分析[J]. 北京大学学报(医学版), 2023, 55(1): 124-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!