北京大学学报(医学版) ›› 2017, Vol. 49 ›› Issue (6): 931-936. doi: 10.3969/j.issn.1671-167X.2017.06.001

• 论著 •    下一篇

结肠癌细胞中组织因子/活性凝血因子Ⅶ-表皮生长因子受体通路间交互作用机制

陈贺凯1,戴芸2,吴婷2,汪欣1,万远廉1,汤坚强1△   

  1. (北京大学第一医院1.普外科,2.消化内科, 北京100034)
  • 出版日期:2017-12-18 发布日期:2017-12-18
  • 通讯作者: 汤坚强 E-mail:doc_tjq@hotmail.com
  • 基金资助:
    国家自然科学基金(81272710、30801092)资助

Mechanism of cross talk between tissue factor/active coagulation factor Ⅶ and epidermal growth factor receptor signalings in colon cancer cells in culture

CHEN He-kai1, DAI Yun2, WU Ting2, WANG Xin1, WAN Yuan-lian1, TANG Jian-qiang1△   

  1. (1. Department of General Surgery, 2. Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China)
  • Online:2017-12-18 Published:2017-12-18
  • Contact: TANG Jian-qiang E-mail:doc_tjq@hotmail.com
  • Supported by:
    Supported by the Natural Science Foundation of China (81272710, 30801092)

摘要: 目的:探讨结肠癌细胞中组织因子/活性凝血因子Ⅶ(tissue factor/active coagulation factor Ⅶ,TF/FⅦa)通路与表皮生长因子受体(epidermal growth factor receptor,EGFR)通路之间是否存在交互作用。方法: 在KRAS野生型的HT-29及KRAS突变型的LoVo结肠癌细胞中,以FⅦa活化TF/FⅦa通路,采用qRT-PCR、Western blot检测EGFR配体双调蛋白(amphiregulin,AREG)及表皮调节素(epiregulin,EREG)基因、蛋白表达改变;利用RNA干扰技术敲低TF表达后活化TF/FⅦa通路,检测其对AREG、EREG基因表达的影响,以证实FⅦa对AREG、EREG表达调节作用依赖TF。以表皮生长因子(epidermal growth factor,EGF)激活两细胞EGFR通路后,检测TF/FⅦa通路关键分子TF、FⅦ基因表达改变。结果: TF/FⅦa通路活化后,HT-29细胞AREG、EREG基因表达及EREG蛋白表达水平均较对照组显著下调(AREG、EREG基因表达量分别为0.55±0.09 vs.0.99±0.09、0.67±0.10 vs.1.02±0.02,EREG蛋白表达量0.54±0.09 vs.1.04±0.13,P均<0.05);LoVo细胞AREG基因表达及AREG、EREG蛋白表达水平较对照组显著上调(AREG基因表达量1.87±0.39 vs.0.93±0.23,AREG、EREG蛋白表达量3.09±0.73 vs.1.11±0.21、1.53±0.19 vs. 0.97±0.23,P均<0.05);TF敲低后均可部分阻断FⅦa对两细胞AREG、EREG表达调节作用;EGFR通路激活后,HT-29细胞TF基因表达较对照组无显著变化,FⅦ基因表达未检测到,而LoVo细胞的FⅦ及TF基因表达均较对照组显著上调,表达量分别为1.53±0.23 vs.1.00±0.23、53.20±6.08 vs.1.00±0.15(P均<0.05)。结论: 结肠癌LoVo细胞TF/FⅦa通路与EGFR通路的活化可分别上调另一通路的关键分子表达并发生交互作用,KRAS基因突变可能对该交互作用的发生发挥关键作用。

关键词: 结肠肿瘤, 凝血致活酶, 因子Ⅶa, 受体, 表皮生长因子

Abstract: Objective:To preliminarily verify the cross talk between tissue factor/active coagulation factor Ⅶ (TF/FⅦa) and epidermal growth factor receptor (EGFR) pathways in human colon cancer cells in culture. Methods: FⅦa was treated to HT-29 (KRAS-wild type) and LoVo (KRAS-mutant) colon cancer cells to activate TF/FⅦa pathway, qRT-PCR and Western blot were used to detect the expressions of amphiregulin (AREG) and epiregulin (EREG), ligands of EGFR on mRNA and protein levels, respectively. After knocking down expression of TF by TF-targeted siRNA transfection, FⅦa was treated and mRNA expressions of AREG and EREG were detected to see whether the FⅦa-induced effects were dependent on TF. Expressions of mRNA of TF and FⅦ were detected by qRT-PCR following the activation of EGFR pathway by treatment with epidermal growth factor (EGF) to HT-29 and LoVo cells. Results: After TF/FⅦa pathway was activated, for HT-29 cells, expressions of AREG (on mRNA level) and EREG (both on mRNA and protein level) were significantly down-regulated versus those of control group, gene expressions of AREG and EREG were 0.55±0.09 vs.0.99±0.09, 0.67±0.10 vs.1.02±0.02, protein expressions of EREG were 0.54±0.09 vs.1.04±0.13, all P<0.05. For LoVo cells, expressions of AREG (both on mRNA and protein level) and EREG (on protein level) were significantly up-regulated versus those of control group, gene expression of AREG were 1.87±0.39 vs. 0.93±0.23, protein expressions of AREG and EREG were 3.09±0.73 vs.1.11±0.21, 1.53±0.19 vs.0.97±0.23, all P<0.05. The regulating effect of AREG and EREG mRNA expression by FⅦa in HT-29 and LoVo cells could both be partly blocked by knocking down TF expression. For HT-29 cells, activation of EGFR pathway induced no significant TF mRNA expression, FⅦ mRNA expression was not detected. However,for LoVo cells, activation of EGFR pathway induced significantly higher mRNA expressions of both TF and FⅦ, expressions were 1.53±0.23 vs.1.00±0.23, 53.20±6.08 vs.1.00±0.15, all P<0.05. Conclusion: In colon cancer cell LoVo, when activated, TF/FⅦa pathway and EGFR pathway could interact through upregulating the other pathway’s effectors, and mutant KRAS might play a critical role in the two pathways’cross talk.

Key words: Colonic neoplasms, Thromboplastin, Factor Ⅶa, Receptor, epidermal growth factor

中图分类号: 

  • R735.3
[1] 汤莹, 张湧波, 吴丹红, 林炎鸿, 兰风华. 13例先天性双侧输精管缺如不育患者的致病基因突变检测[J]. 北京大学学报(医学版), 2024, 56(5): 763-774.
[2] 扶琼,叶霜. 嵌合抗原受体T细胞治疗在自身免疫疾病中的应用和思考[J]. 北京大学学报(医学版), 2023, 55(6): 953-957.
[3] 朱晓娟,张虹,张爽,李东,李鑫,徐玲,李挺. 人表皮生长因子受体2低表达乳腺癌的临床病理学特征及预后[J]. 北京大学学报(医学版), 2023, 55(2): 243-253.
[4] 程昉,杨邵英,房星星,王璇,赵福涛. CCL28-CCR10通路在类风湿关节炎单核细胞迁移中的作用[J]. 北京大学学报(医学版), 2022, 54(6): 1074-1078.
[5] 董尔丹. 心血管受体的信号转导与疾病[J]. 北京大学学报(医学版), 2022, 54(5): 796-802.
[6] 王跃,张爽,张虹,梁丽,徐玲,程元甲,段学宁,刘荫华,李挺. 激素受体阳性/人表皮生长因子受体2阴性乳腺癌临床病理特征及预后[J]. 北京大学学报(医学版), 2022, 54(5): 853-862.
[7] 程晓静,蒋栋,张连海,王江华,李雅真,翟佳慧,闫宝琪,张露露,谢兴旺,李子禹,季加孚. KRAS G12V特异性T细胞受体治疗恶性肿瘤的临床前研究[J]. 北京大学学报(医学版), 2022, 54(5): 884-895.
[8] 李芷晴,俞冰,蔡泽宇,王迎宝,张煦,周彪,方晓红,于芳,付毅,孙金鹏,李伟,孔炜. 柚皮素抑制马凡综合征小鼠胸主动脉瘤的形成[J]. 北京大学学报(医学版), 2022, 54(5): 896-906.
[9] 蔡天玉,朱振鹏,徐纯如,吉星,吕同德,郭振可,林健. 成纤维细胞生长因子受体2在肾透明细胞癌中的表达及意义[J]. 北京大学学报(医学版), 2022, 54(4): 628-635.
[10] 顾阳春,刘颖,谢超,曹宝山. 程序性死亡蛋白-1抑制剂治疗晚期肺癌出现垂体免疫不良反应3例[J]. 北京大学学报(医学版), 2022, 54(2): 369-375.
[11] 田佳宜,张霞,程功,刘庆红,王世阳,何菁. 系统性红斑狼疮患者血清白细胞介素-2受体α水平及其临床意义[J]. 北京大学学报(医学版), 2021, 53(6): 1083-1087.
[12] 廖栩鹤,王荣福,刘萌,陈雪祺,熊焰,农琳,殷雷,张炳晔,杜毓菁. 18F-FDG PET/CT半定量参数、表皮生长因子受体和间变淋巴瘤激酶基因突变对肺腺癌患者预后评估的价值[J]. 北京大学学报(医学版), 2021, 53(2): 246-254.
[13] 宋国红,李惠平,邸立军,严颖,姜晗昉,徐玲,万冬桂,李瑛,王墨培,肖宇,张如艳,冉然,王环. 真实世界吡咯替尼治疗HER2阳性转移性乳腺癌的疗效及安全性[J]. 北京大学学报(医学版), 2020, 52(2): 254-260.
[14] 张晓鹏,张维宇,霍飞,胡浩,王起,许克新. 原发性女性膀胱出口梗阻的手术疗效随访及其发病机制[J]. 北京大学学报(医学版), 2019, 51(6): 1052-1055.
[15] 梁学军,宫丽颖,周菲,周德敏,祝静静. 非天然氨基酸定点偶联抗人类表皮生长因子受体2-抗体偶联药物的药理学活性[J]. 北京大学学报(医学版), 2019, 51(5): 797-804.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!