北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (5): 796-802. doi: 10.19723/j.issn.1671-167X.2022.05.003

• 院士论坛 • 上一篇    下一篇

心血管受体的信号转导与疾病

董尔丹*()   

  • 收稿日期:2022-06-14 出版日期:2022-10-18 发布日期:2022-10-14
  • 通讯作者: 董尔丹 E-mail:donged@bjmu.edu.cn
  • 作者简介:董尔丹,中国工程院院士,北京大学博雅讲席教授,北京大学心血管研究所所长,分子心血管学教育部重点实验室主任,北京大学第三医院血管医学研究所研究员。任中国医学科学院学部委员,中国中医科学院学部委员,教育部科学技术委员会科技伦理专门委员会主任委员,中国科协学会与学术委员会委员,中国病理生理学会副理事长,国际心脏研究会中国分会副主席,中华医学会医学科研管理专业委员会候任主任委员等。任Science China Life SciencesChinese Medical Journal、中华心血管病杂志等学术期刊主编或编委。
    长期从事心血管基础研究和医学科技管理工作。发现心脏β肾上腺素受体分布及病理变化并阐明其减敏机制,发现血管α1肾上腺素受体亚型分布、功能特点及其信号转导机制,为心血管功能调控提供理论依据。“从无到有”构建以人体器官/系统为基础,以科学问题为导向,以疾病发生发展转归为核心的国家科学基金医学体系。以“结构-过程-绩效”理念推进创新管理实践,围绕国家重大需求和科学前沿,实施战略规划和统筹布局,“从有到优”促进我国医学学科发展、人才成长、自主创新、开放合作。主持多项国家级课题,发表论文170余篇。获何梁何利基金科学与技术进步奖、中华医学科研管理杰出贡献奖,享受国务院政府特殊津贴

尔丹 董*()   

  • Received:2022-06-14 Online:2022-10-18 Published:2022-10-14
  • Contact: 尔丹 董 E-mail:donged@bjmu.edu.cn

RICH HTML

  

关键词: 受体, 信号转导, 心血管疾病

中图分类号: 

  • R54

图1

肾上腺素受体研究历史"

图2

主要心血管受体与主要心血管疾病 ET1R,内皮素1受体(endothelin-1 receptor);AR,肾上腺素受体(adrenergic receptor);AT1R,血管紧张素Ⅱ-1型受体(angiotensin Ⅱ type 1 receptor);TβR,转化生长因子-β受体(transforming growth factor β receptor);EGFR,表皮生长因子受体(epidermal growth factor receptor);IL-1R,白细胞介素-1受体(interleukin-1 receptor)。"

1 Dale HH . On some physiological actions of ergot[J]. J Physiol, 1906, 34 (3): 163- 206.
doi: 10.1113/jphysiol.1906.sp001148
2 Ahlquist RP . A study of the adrenotropic receptors[J]. Am J Physiol, 1948, 153 (3): 586- 600.
doi: 10.1152/ajplegacy.1948.153.3.586
3 Lands AM , Luduena FP , Buzzo HJ . Differentiation of receptors responsive to isoproterenol[J]. Life Sci, 1967, 6 (21): 2241- 2249.
doi: 10.1016/0024-3205(67)90031-8
4 Langer SZ . Presynaptic regulation of catecholamine release[J]. Biochem Pharmacol, 1974, 23 (13): 1793- 1800.
doi: 10.1016/0006-2952(74)90187-7
5 Han C , Abel PW , Minneman KP . Heterogeneity of alpha 1-adrenergic receptors revealed by chlorethylclonidine[J]. Mol Pharmacol, 1987, 32 (4): 505- 510.
6 James B . Pioneers in cardiology: Sir James Black, MB, ChB, FRS, FRCP. Interview by Mark Nicholls[J]. Circulation, 2008, 117 (8): f47- f48.
7 Cerione RA , Strulovici B , Benovic JL , et al. Pure beta-adrenergic receptor: The single polypeptide confers catecholamine responsiveness to adenylate cyclase[J]. Nature, 1983, 306 (5943): 562- 566.
doi: 10.1038/306562a0
8 Nguyen AH , Thomsen A , Cahill TR , et al. Structure of an endosomal signaling GPCR-G protein-beta-arrestin megacomplex[J]. Nat Struct Mol Biol, 2019, 26 (12): 1123- 1131.
doi: 10.1038/s41594-019-0330-y
9 Page IH , Helmer OM . A crystalline pressor substance (angiotonin) resulting from the reaction between renin and renin-activator[J]. J Exp Med, 1940, 71 (1): 29- 42.
doi: 10.1084/jem.71.1.29
10 Lin SY , Goodfriend TL . Angiotensin receptors[J]. Am J Physiol, 1970, 218 (5): 1319- 1328.
doi: 10.1152/ajplegacy.1970.218.5.1319
11 Whitebread S , Mele M , Kamber B , et al. Preliminary biochemical characterization of two angiotensin Ⅱ receptor subtypes[J]. Biochem Biophys Res Commun, 1989, 163 (1): 284- 291.
doi: 10.1016/0006-291X(89)92133-5
12 Xiao RP , Zhang SJ , Chakir K , et al. Enhanced G(i) signaling selectively negates beta2-adrenergic receptor (AR), but not beta1-AR-mediated positive inotropic effect in myocytes from failing rat hearts[J]. Circulation, 2003, 108 (13): 1633- 1639.
doi: 10.1161/01.CIR.0000087595.17277.73
13 Noma T , Lemaire A , Naga PS , et al. Beta-arrestin-mediated beta1-adrenergic receptor transactivation of the EGFR confers cardioprotection[J]. J Clin Invest, 2007, 117 (9): 2445- 2458.
doi: 10.1172/JCI31901
14 Li Y , Zhang H , Liao W , et al. Transactivated EGFR mediates α1-AR-induced STAT3 activation and cardiac hypertrophy[J]. Am J Physiol Heart Circ Physiol, 2011, 301 (5): H1941- H1951.
doi: 10.1152/ajpheart.00338.2011
15 Liu F , He K , Yang X , et al. α1A-adrenergic receptor induces activation of extracellular signal-regulated kinase 1/2 through endocytic pathway[J]. PLoS One, 2011, 6 (6): e21520.
doi: 10.1371/journal.pone.0021520
16 Wang W , Bian J , Li Z . Internalized activation of membrane receptors: From phenomenon to theory[J]. Trends Cell Biol, 2021, 31 (6): 428- 431.
doi: 10.1016/j.tcb.2021.03.008
17 Wang W , Qiao Y , Li Z . New insights into modes of GPCR activation[J]. Trends Pharmacol Sci, 2018, 39 (4): 367- 386.
doi: 10.1016/j.tips.2018.01.001
18 Liang N , Bing Z , Wang Y , et al. Clinical implications of EGFR-associated MAPK/ERK pathway in multiple primary lung cancer[J]. Clin Transl Med, 2022, 12 (5): e847.
19 Zaryouh H , De Pauw I , Baysal H , et al. Recent insights in the PI3K/Akt pathway as a promising therapeutic target in combination with EGFR-targeting agents to treat head and neck squamous cell carcinoma[J]. Med Res Rev, 2022, 42 (1): 112- 155.
doi: 10.1002/med.21806
20 Andl CD , Mizushima T , Oyama K , et al. EGFR-induced cell migration is mediated predominantly by the JAK-STAT pathway in primary esopha-geal keratinocytes[J]. Am J Physiol Gastrointest Liver Physiol, 2004, 287 (6): G1227- G1237.
doi: 10.1152/ajpgi.00253.2004
21 Wang J , Ma J , Nie H , et al. Hepatic regulator of G protein signaling 5 ameliorates nonalcoholic fatty liver disease by suppressing transforming growth factor beta-activated kinase 1-c-Jun-N-terminal kinase/p38 signaling[J]. Hepatology, 2021, 73 (1): 104- 125.
doi: 10.1002/hep.31242
22 Grimm M , Brown JH . Beta-adrenergic receptor signaling in the heart: Role of CaMKⅡ[J]. J Mol Cell Cardiol, 2010, 48 (2): 322- 330.
doi: 10.1016/j.yjmcc.2009.10.016
23 Xiao H , Li H , Wang JJ , et al. IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult[J]. Eur Heart J, 2018, 39 (1): 60- 69.
doi: 10.1093/eurheartj/ehx261
24 尹峰, 吕志珍, 韩启德, 等. β2-肾上腺素受体在新生大鼠心肌成纤维细胞中的分布及其促增殖作用[J]. 生理学报, 2003, 55 (3): 251- 254.
25 Schnee JM , Hsueh WA . Angiotensin Ⅱ, adhesion, and cardiac fibrosis[J]. Cardiovasc Res, 2000, 46 (2): 264- 268.
doi: 10.1016/S0008-6363(00)00044-4
26 Xiao H , Ma X , Feng W , et al. Metformin attenuates cardiac fibrosis by inhibiting the TGFβ1-Smad3 signalling pathway[J]. Cardiovasc Res, 2010, 87 (3): 504- 513.
doi: 10.1093/cvr/cvq066
27 Lim GB . Sustained BP reduction with renal denervation[J]. Nat Rev Cardiol, 2022, 19 (6): 352.
28 Ruiz-Ortega M , Lorenzo O , Rupérez M , et al. Angiotensin Ⅱactivates nuclear transcription factor κB through AT1 and AT2 in vascular smooth muscle cells: molecular mechanisms[J]. Circ Res, 2000, 86 (12): 1266- 1272.
doi: 10.1161/01.RES.86.12.1266
29 Verweij P , Danaietash P , Flamion B , et al. Randomized dose-response study of the new dual endothelin receptor antagonist aprocitentan in hypertension[J]. Hypertension, 2020, 75 (4): 956- 965.
doi: 10.1161/HYPERTENSIONAHA.119.14504
30 Kong P , Cui ZY , Huang XF , et al. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention[J]. Signal Transduct Target Ther, 2022, 7 (1): 131.
doi: 10.1038/s41392-022-00955-7
31 Robbins CS , Chudnovskiy A , Rauch PJ , et al. Extramedullary hematopoiesis generates Ly-6Chigh monocytes that infiltrate atherosclerotic lesions[J]. Circulation, 2012, 125 (2): 364- 374.
doi: 10.1161/CIRCULATIONAHA.111.061986
32 Hinterdobler J , Schott S , Jin H , et al. Acute mental stress drives vascular inflammation and promotes plaque destabilization in mouse atherosclerosis[J]. Eur Heart J, 2021, 42 (39): 4077- 4088.
doi: 10.1093/eurheartj/ehab371
33 Han C , Liu J , Liu X , et al. Angiotensin Ⅱ induces C-reactive protein expression through ERK1/2 and JNK signaling in human aortic endothelial cells[J]. Atherosclerosis, 2010, 212 (1): 206- 212.
doi: 10.1016/j.atherosclerosis.2010.05.020
34 Li M , Liu J , Han C , et al. Angiotensin Ⅱ induces the expression of C-reactive protein via MAPK-dependent signal pathway in U937 macrophages[J]. Cell Physiol Biochem, 2011, 27 (1): 63- 70.
doi: 10.1159/000325206
35 Xu L , Liu JT , Li K , et al. Genistein inhibits Ang Ⅱ-induced CRP and MMP-9 generations via the ER-p38/ERK1/2-PPARγ-NF-κB signaling pathway in rat vascular smooth muscle cells[J]. Life Sci, 2019, 216, 140- 146.
doi: 10.1016/j.lfs.2018.11.036
36 Ridker PM , Rane M . Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease[J]. Circ Res, 2021, 128 (11): 1728- 1746.
doi: 10.1161/CIRCRESAHA.121.319077
37 Geraghty L , Santangeli P , Tedrow UB , et al. Contemporary management of electrical storm[J]. Heart Lung Circ, 2019, 28 (1): 123- 133.
doi: 10.1016/j.hlc.2018.10.005
[1] 汤莹, 张湧波, 吴丹红, 林炎鸿, 兰风华. 13例先天性双侧输精管缺如不育患者的致病基因突变检测[J]. 北京大学学报(医学版), 2024, 56(5): 763-774.
[2] 陈楚云,孙蓬飞,赵静,贾佳,范芳芳,王春燕,李建平,姜一梦,霍勇,张岩. 北京社区人群促红细胞生成素相关因素及其与10年心血管疾病风险的关系[J]. 北京大学学报(医学版), 2023, 55(6): 1068-1073.
[3] 扶琼,叶霜. 嵌合抗原受体T细胞治疗在自身免疫疾病中的应用和思考[J]. 北京大学学报(医学版), 2023, 55(6): 953-957.
[4] 张紫薇,花语蒙,刘爱萍. 中国中老年人群抑郁症状、缺血性心血管疾病10年风险对心血管疾病的联合影响[J]. 北京大学学报(医学版), 2023, 55(3): 465-470.
[5] 张云静,乔丽颖,祁萌,严颖,亢伟伟,刘国臻,王明远,席云峰,王胜锋. 乳腺癌患者新发心血管疾病预测模型的建立与验证:基于内蒙古区域医疗数据[J]. 北京大学学报(医学版), 2023, 55(3): 471-479.
[6] 张明露,刘秋萍,巩超,王佳敏,周恬静,刘晓非,沈鹏,林鸿波,唐迅,高培. 阿司匹林用于心血管病一级预防的不同策略比较:一项马尔可夫模型研究[J]. 北京大学学报(医学版), 2023, 55(3): 480-487.
[7] 朱晓娟,张虹,张爽,李东,李鑫,徐玲,李挺. 人表皮生长因子受体2低表达乳腺癌的临床病理学特征及预后[J]. 北京大学学报(医学版), 2023, 55(2): 243-253.
[8] 杨菁,杜娟,王玉湘,刘从容. JAK/STAT信号通路在卵巢高级别浆液性癌中的激活及预后意义[J]. 北京大学学报(医学版), 2023, 55(2): 270-275.
[9] 程昉,杨邵英,房星星,王璇,赵福涛. CCL28-CCR10通路在类风湿关节炎单核细胞迁移中的作用[J]. 北京大学学报(医学版), 2022, 54(6): 1074-1078.
[10] 王跃,张爽,张虹,梁丽,徐玲,程元甲,段学宁,刘荫华,李挺. 激素受体阳性/人表皮生长因子受体2阴性乳腺癌临床病理特征及预后[J]. 北京大学学报(医学版), 2022, 54(5): 853-862.
[11] 程晓静,蒋栋,张连海,王江华,李雅真,翟佳慧,闫宝琪,张露露,谢兴旺,李子禹,季加孚. KRAS G12V特异性T细胞受体治疗恶性肿瘤的临床前研究[J]. 北京大学学报(医学版), 2022, 54(5): 884-895.
[12] 李芷晴,俞冰,蔡泽宇,王迎宝,张煦,周彪,方晓红,于芳,付毅,孙金鹏,李伟,孔炜. 柚皮素抑制马凡综合征小鼠胸主动脉瘤的形成[J]. 北京大学学报(医学版), 2022, 54(5): 896-906.
[13] 顾阳阳,谭晓辉,宋文鹏,方冬,宋卫东,袁亦铭,冯宁翰,关瑞礼. 4′-甲基醚金连木黄酮对棕榈酸诱导的大鼠阴茎海绵体内皮细胞功能障碍的影响[J]. 北京大学学报(医学版), 2022, 54(4): 599-604.
[14] 蔡天玉,朱振鹏,徐纯如,吉星,吕同德,郭振可,林健. 成纤维细胞生长因子受体2在肾透明细胞癌中的表达及意义[J]. 北京大学学报(医学版), 2022, 54(4): 628-635.
[15] 顾阳春,刘颖,谢超,曹宝山. 程序性死亡蛋白-1抑制剂治疗晚期肺癌出现垂体免疫不良反应3例[J]. 北京大学学报(医学版), 2022, 54(2): 369-375.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!